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Abstract

We develop a method to incorporate model uncertainty with respect to restricted VAR(1)

models using Bayesian Model Averaging (BMA) and apply our method to analyze the long-

run predictability (forecast horizons up to 30 years) of asset returns. We find that only the

dividend yield and credit spread are important predictors of stock returns in the short-run,

but that almost all considered predictors are important for long-run predictability. Despite

clear evidence of mean-reversion in stock returns, we show that stocks are in general at least

as risky in the long-run as in the short-run if model uncertainty is incorporated and that

stocks are even riskier in the long-run in case of an economic crisis such as the recent sub-

prime mortgage crisis. Single models however underestimate the long-run riskiness of stock

returns considerably. Finally, the strategic asset allocations for long-term investors using

BMA are substantially different from investors that use the highest posterior probability

model. Our analysis relates this finding to a lower mean, higher variance, more negative

skewness and a higher kurtosis of the predictive distributions of excess stock returns when

incorporating model uncertainty. Differences are especially large when the economy deviates

substantially from its steady state value.
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1 Introduction

Merton (1969, 1971) showed that under changing investment opportunities, the optimal portfo-

lios of long-term investors differ from the ones of short-term investors. Long-term investors hold

hedge portfolios that anticipate future changes in the investment opportunities. Empirically, the

main driving force in these hedge portfolios is the mean reversion of stock returns, which implies

that equity is less risky for long-term investors than other types of assets. The main implication

is that long-term investors in general hold more equity than short-term investors. The standard

methodology in the strategic asset allocation literature is to select one model and to use its

predictions to calculate the optimal portfolios of long-term investors. Prominent examples are

Barberis (2000) - who considers a small asset menu, but includes parameter uncertainty - and

Campbell, Chan, and Viceira (2003) - who consider a larger asset menu, but ignore parameter

uncertainty.1

Long-term investors face substantial uncertainty about how to model the predictive distri-

bution of future asset returns. The reason is that they face uncertainty about whether stock

returns are predictable in the long-run and if so, which predictor variables they should include.

Firstly, there is no consensus in the literature on whether stock returns are predictable in the

short-run.2 On one hand, Goyal and Welch (2008) show that none of the predictor variables

they consider consistently outperforms the historical average of stock returns, but on the other

hand Campbell and Thompson (2008) show that some of the predictor variables outperform

the sample mean if one adds extra information to the regressions. Secondly, there is hardly

any research on the long-run predictability of asset returns despite the fact that its presence or

absence is very important for long-horizon investors. Taken together this means that long-term

investors face substantial uncertainty about how to model the predictive distribution of future

asset returns.

We take the perspective of such a long-term investor who explicitly acknowledges that she

is uncertain about the econometric model she should use to model the distribution of future

asset returns and about the values of the parameters in the econometric model. She considers

models that differ in the predictor variables that are included. As a first step we develop an

estimation framework that is able to include model uncertainty over long-term predictions using

Bayesian Model Averaging (BMA). Secondly, we analyze empirically whether model uncertainty

is present and relevant for investors with long investment horizons (up to 30 years). To the best

of our knowledge we are the first ones to consider (the implications of) model uncertainty for

long-horizon investors. We find that model uncertainty is not important at short horizons, but

that it is very important at long horizons.

The models we consider all specify how to predict a set of twelve dependent variables. We

include three asset returns - the real T-bill rate, excess stock returns and excess bond returns

1Campbell and Viceira (2002) and Brandt (2010) provide an extensive survey of the strategic asset allocation
literature.

2Refer for example to the special issue (number 21) on stock return predictability of The Review of Financial
Studies in 2008.

1



- and nine predictor variables - the default premium, the dividend-to-price ratio, the book-to-

market ratio, the price-earnings ratio, the nominal yield on the 90-day T-bill, the yieldspread,

the credit spread, a measure for newly issued stocks and a proxy for the stock return variance as

dependent variables. Every model specifies the set of right-hand-side variables to include in the

twelve different equations. This set is a subset of the first lag of the dependent variables and can

differ across the equations. The model that nests all other models is a VAR(1) model. The other

models are restricted VAR(1) models, where some (or all) of the lagged dependent variables are

excluded in some (or all) of the equations. In order to obtain long-horizon predictions, we iterate

the model forward.

The distinguishing feature of our specification is the fact that it allows us to incorporate

model uncertainty in both the prediction of asset returns (which is usually done in the literature)

and the prediction of the predictor variables (which is usually ignored in the literature). Since it

is essential at long horizons to accurately predict the predictors of asset returns, the latter effect

is at least as important as the former effect and therefore needs to be taken into account when

considering the impact of model uncertainty on the long-run predictability of asset returns.

Ignoring this effect will significantly underestimate the importance of model uncertainty at

long horizons. To give an example, a long-term investor cannot use the information that the

dividend-to-price ratio predicts next period’s stock returns if she does not know how to predict

the dividend-to-price ratio itself.

An essential difference between our specification and the set-ups in Avramov (2002) and

Cremers (2002) is that their set-ups are not suited for analyzing the impact of model uncertainty

on long-horizon predictability. Avramov (2002) briefly considers long-run predictions, but the

posterior model probabilities in his analysis are only based on the equation for stock returns

and are not based on the prediction equations for the predictor variables. Therefore, his set-up

considerably underestimates the true impact of model uncertainty at long horizons.3

The estimation results show that the credit spread and the dividend-to-price ratio are the

most important predictors of stock returns at short horizons. However, at long horizons all

variables are important predictors of long-horizon stock returns either by predicting stock returns

directly or by predicting the predictors of stock returns. Model uncertainty is clearly present,

since none of the models receives a high posterior model probability.

We find that model uncertainty is very relevant for long-term investors, but relatively unim-

portant at short horizons. Firstly, our results show that the incorporation of model uncertainty

increases the risk of stock returns - measured by the variance of the predictive distribution -

considerably at long horizons. The reason is that the BMA specification averages over models

that predict very different future trajectories of stock returns. Therefore, the variance of the

(mean) forecasts of all these different models becomes an important component of the total

predictive variance of stock returns. The impact is especially large when the predictor variables

3A related paper is Wright (2008). He applies a similar methodology as Avramov (2002) to forecast exchange
rates at longer horizons using a BMA specification. Both use an auxiliary model for the prediction of predictor
variables. However, in their setting the fit of the auxiliary model does not impact the model probabilities although
it is essential for long-horizon predictability.
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deviate substantially from their historical average, since the differences in predictions across

models is especially large in that case. The predictive variance of stock returns changes over

time, because predictors change over time, even though the considered models are homoscedas-

tic. However, the incorporation of model uncertainty only has a minor effect at short horizons,

since the different models predict very similar future stock returns for short horizons.

These results are partially related to recent findings in Pastor and Stambaugh (2010). They

find that the annualized predictive variance of stock returns is much higher at long horizons

than at short horizons. Our results only partially confirm Pastor and Stambaugh (2010). We

find that the (annualized) predictive variance at a 30-year horizon was much higher than at a

1-quarter horizon during financial crises such as the great depression in 1929 and the subprime

mortgage crisis in 2008. However, during the 1960s and 1970s, stocks turned out to be much

safer at long horizons. Our results contradict some of the results in Avramov (2002). He finds

that model uncertainty has the biggest impact at short horizon. On the contrary we show

that model uncertainty is mainly important at long horizons, since both the prediction of asset

returns and the prediction of the predictors of asset returns is important at longer horizons.

Secondly, we find that the incorporation of model uncertainty leads to very different strate-

gic asset allocations at long horizons using buy-and-hold strategies. The incorporation of model

uncertainty decreases stock allocations by up to 35% for investment horizons up to 20 years

relative to a setting where we select the model that obtains the highest posterior probability.

Empirically, we find that the stock allocation is so much lower, because the inclusion of model

uncertainty lowers the mean, increases the variance, leads to (more) negative skewness and in-

creases the kurtosis of the predictive distribution of stock returns. Note that all four moments

of the predictive distribution depend on the values of predictor variables and therefore change

substantially over time. We also find that the incorporation of model uncertainty has an im-

portant impact on the utility that long-term investors expect to receive from the strategic asset

allocations. At the longest horizons, the certainty equivalent can be lower than 1 even when

an investor follows the optimal strategy. This implies (since all returns are in real terms) that

an investor is willing to pay a lot for an inflation-indexed bond to avoid following (optimal)

buy-and-hold strategies. Furthermore, the results again show that model uncertainty only has a

minor impact on short horizons. Its incorporation hardly changes the predictive moments, asset

allocations and expected utility at short horizons.

These results partially contradict results in Barberis (2000) and Campbell, Chan, and Viceira

(2003). They find that long-term investors should invest more in equity than short-term investors

even when parameter uncertainty is included. However, we find that this is not the case when

model uncertainty is also incorporated. Our results show that investors with a horizon of 20

years should invest as much in the stock market as short-term investors.

Thirdly, we show that our results are robust to changes in our specification. Firstly, we

find that a different prior distribution leads to very similar posterior results. Secondly, we show

that the estimation results are very stable over time by estimating our specification on smaller

subsamples.

3



A final important contribution of our paper is that we succeed in efficiently estimating the

BMA specification. Although we cannot calculate the posterior moments analytically, our refined

Markov Chain Monte Carlo (MCMC) technique converges quickly to the stationary distribution

of the Markov chain. The Monte Carlo technique is based on results in Godsill (2001) and

only requires us to know the marginal likelihood conditional on the covariance matrix of the

error term. Standard techniques to estimate BMA specifications instead crucially depend on

the marginal likelihood.4 The latter is however not analytically available for the VAR(1) models

with arbitrary restrictions that we consider.

The remainder of this paper is organized as follows. Section 2 introduces the data we use.

Next, Section 3 describes the methodology. It provides details on the model, the prior assump-

tions, the posterior distributions, the Markov Chain Monte Carlo (MCMC) techniques we use to

obtain estimation results, and some alternative specifications. Subsequently, section 4 reports

the estimation results of the weighted Bayesian Model Averaging (BMA) specification. Sections

5 - 6 analyze the impact of the incorporation of model uncertainty on the term structure of risk

of stock returns and on strategic asset allocations. Next, section 7 provides some robustness

checks. Finally, section 8 concludes. The appendix contains additional technical details on the

posterior distributions and the simulation techniques that are used in this paper.

2 Data

We use a quarterly data-set for the US stock and bond market. It consists of three asset returns

and nine predictor variables and is based on Goyal and Welch (2008). The data set starts in the

fourth quarter of 1926 and ends in the fourth quarter of 2008. We use all predictor variables

that are available in the quarterly Goyal and Welch (2008) data-set for this sample period.

[Table 1 about here.]

The first asset return is the ex post real T-bill rate (Rtbill) defined as the difference between

the log return (or lagged yield) on the 3-month T-bill and log inflation. The second asset return

is the excess log stock return (Xs) which is the difference between the log return (including

dividends) on the S&P 500 and the log return on the (nominal) 3-month T-bill. The final asset

return is the excess log return on a long-term government bond with a maturity of 20 years (Xb)

and is defined similarly.

Next, we consider nine predictor variables. Several papers show that these variables predict

excess stock returns and/or excess bond returns. Please refer to Goyal and Welch (2008) for

references and more details on data construction. The first predictor variable is the default

risk premium (Defpr) formed as the return difference between a long-term corporate bond and

a long-term government bond. The second predictor is the log dividend-to-price ratio (DP )

defined as the log difference between the dividends over the past four quarters and the current

log index level. The next predictor variable is the log book-to-market ratio (BM) given as the

4An example is the popular MC3 technique used in e.g. Fernandez, Ley, and Steel (2001).
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log of the ratio of the book-to-market value for the Dow Jones Industrial Average. The fourth

predictor is the log price-earnings ratio (PE) formed as the difference between the current log

index level and the log of average earnings over the past 10 years. The next predictor is the

smoothed log nominal yield (Ynom). It is defined as the log nominal yield on the 90-day T-bill

minus the average log nominal yield over the past four quarters. Sixthly, we include the yield

spread (Yspr) which is defined as the difference between the log yield on a long-term government

bond and the log yield on the 90-day T-bill. The seventh predictor is the credit spread (Crspr)

formed as the difference in log yields of Moody’s BAA and AAA rated bonds. The eighth

predictor is the ratio of 12-month moving sums of net issues by NYSE stocks and the total

end-of-year market capitalization of these stocks (ntis). The final predictor is the log of the

stock return variance (V ar) and is proxied by summing the squared daily returns on the S&P

500 over every quarter.

Table 1 provides summary statistics of our data. The equity risk premium of 1.32 % per

quarter is in line with most recent papers that use historical data. The results in the table show

that the last eight predictor variables are very persistent.5

3 Methodology

Define the n× 1 vector yt as follows (n = 12 in our set-up)

yt =







rtbill,t

xt

st






, (1)

where rtbill,t is the real return on the T-bill, xt is a vector of excess returns on stocks and bonds

over the T-bill and st is a vector of state variables. Furthermore, define Y as the T × n matrix

containing observations on yt and define Y−1 as the T × n matrix containing observations on

yt−1. Finally, let Yi be the ith column of Y .

Our aim is to model the dynamics of all twelve variables in yt. The common methodology

in the strategic asset allocation literature is to select one model using a model selection criteria

and to base inference on this model under the assumption that the selected model is the correct

model, refer for example to Campbell, Chan, and Viceira (2003) and Barberis (2000). However,

this method ignores the uncertainty in the model selection step and therefore substantially

underestimates the uncertainty an investor truly faces. For example, suppose that the second-

best model is almost as likely as the best model, but leads to very different implications for

long-term investors. If an investor wants to obtain an accurate picture of the distribution of

5Since the frequentist sampling theory of (for example) the OLS estimator depends strongly on the presence
of a unit root, a frequentist econometrician might wonder whether these variables actually contain unit roots.
We cannot reject a unit root in DP , BM , PE and the Crspr using the Augmented Dickey Fuller test at the 5%
significance level. However, it is important to note that this will not affect inference in our Bayesian setting, since
posterior distributions do not condition on unit roots. Besides, if we interpret the results of the frequentist unit
root tests in a Bayesian way as suggested by Sims and Uhlig (1991), we only find very limited evidence for the
presence of unit roots with a largest ”p-value” of only 2.80% for BM.
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future asset returns and the uncertainty she faces, she should also include the implications of

this second-best model. The Bayesian methodology allows us to incorporate model uncertainty

in the decisions a long-term investor faces.

We use Bayesian Model Averaging (BMA) to average model predictions across all considered

models. It assigns a posterior probability to all individual models and uses these probabilities as

weights on the forecasts of the individual models to come up with the composite forecast. In this

way, models that receive positive posterior probability are taken into account in the composite

forecasts, but only the plausible models get a large weight. Several papers such as Avramov

(2002) and Cremers (2002) have also shown that the use of the BMA technique leads to better

out-of-sample forecasts.6

If more and more information gets available (if the sample size T goes to infinity) we would

hope that the posterior probability of the ”best” model goes to 1. Gelfand and Dey (1994) show

that asymptotically the posterior probability of the true model goes to 1 if it is included in the

model set. Fernandez-Villaverde and Rubio-Ramirez (2004) extend this result to a setting where

the true model is not included in the model set. They find that the posterior probability of the

model that minimizes the Kullback-Leibler distance to the true model goes to 1 asymptotically.

The latter result can be seen as a justification for using posterior model probabilities when the

true model is not included in the model set. In fact, we believe - as do Hoeting, Madigan, Raftery,

and Volinsky (1999) - that using Bayesian Model Averaging might even be more important

in such a setting, since we expect that none of the considered models has a high posterior

probability in a moderately sized sample. If instead the true model would have been included,

we would expect its posterior probability already to be large in a moderately sized sample.

Model uncertainty would be less important with such a dominant model.

The next subsections introduce the model (and likelihood function), the prior, the posterior

and the MCMC techniques we use. The last subsection compares our specification to alternative

specifications.

3.1 Model

The models we consider consist of twelve equations. Every model specifies the set of right-hand-

side variables that is included to predict the individual elements in yt. This set always includes

a constant and a subset of Y−1. For simplicity, we do not consider lags beyond one.7 We allow

the set of included right-hand-side variables to differ across equations.

First, we consider the model that includes all variables in yt−1 as right-hand-side variables

6We choose the Bayesian perspective, because it is conceptually straightforward to include Model Averaging by
just treating models as random themselves and applying Bayes rule in the standard way. It would also have been
possible to use model averaging from the frequentist perspective. A frequentist could for example use (functions
of) information criteria to give weight to the different models, refer for example to Hjort and Claeskens (2003).
The frequentist methods do not seem to be able to deal with such a large model class as we consider.

7Although the models only predict next period’s asset returns and predictor variables by using current values
of the asset returns and predictor variables, we use the models to make long-horizon forecasts of stock returns.
We do this by iterating our model forward as in e.g. Barberis (2000).
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in every equation

Yi = Xβi + ǫi, i = 1, ......, n, (2)

where X is a T × (n+ 1) matrix [ι, Y−1] and βi and ǫi are respectively the (n+ 1)× 1 vector of

regression coefficients and the T × 1 vector of error terms for equation i. This model nests all

the other models we consider. Equivalently,

Y = XB′ + E, (3)

where B is a n× (n+1) matrix of regression coefficients and E is a T ×n matrix of error terms.

This all-encompassing model is a VAR(1) model. The other models are obtained by removing

some (or all) of the right-hand-side variables from some (or all) of the n equations. We assume

throughout that the n× 1 vector ǫt is i.i.d. normally distributed

ǫt ∼ N(0,Σ). (4)

Model j (Mj) is defined by specifying the set of included right-hand-side variables for every

equation i. We denote the set of right-hand-side variables for equation i in model j as Z
(j)
i (Z

(j)
i

always contains a constant). The regression model j is then given as

Yi = Z
(j)
i β

(j)
i + ǫ

(j)
i , i = 1, ......, n, (5)

where β
(j)
i is a k

(j)
i × 1 vector of slope coefficients for equation i in model j.

The regression models we consider are restricted VAR(1) models.8 Since Σ(j) - the covariance

matrix of the error term for model j - is not diagonal, the error terms ǫ
(j)
i are correlated across

equations i. This implies that the n regression equations form a Seemingly Unrelated Regression

(SUR) model. Therefore, we need to estimate the n regression equations simultaneously to obtain

efficient estimates.9 In total we consider 2n
2
models.

In order to calculate the posterior results, we need to obtain an expression for the likeli-

hood functions of the different models. Therefore, we first introduce some alternative notation.

Instead of equation (5), we can express model j as follows

y = Z(j)β(j) + ǫ(j), (6)

where y is the Tn×1 vector vec(Y), β(j) is the k(j)×1 vector [β
(j)′

1 , ...β
(j)′
n ]′ with k(j) =

∑n
i=1 k

(j)
i ,

8It is common in the strategic asset allocation literature to use small VAR(1) models to model the dynamics
of asset returns and predictor variables, refer for example to Campbell and Viceira (2002) and Campbell, Chan,
and Viceira (2003).

9In some restrictive cases, it would also be efficient to estimate the different equations separately, for example
when the same set of right-hand-side variables is included in all equations.
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ǫ(j) is a Tn× 1 vector of vertically stacked ǫ
(j)
i and Z(j) is a Tn× k(j) matrix

Z(j) =















Z
(j)
1 0 . . . 0

0 Z
(j)
2 . . . 0

...
...

...

0 0
... Z

(j)
n















.

The likelihood function of model Mj is (conditional on the first observation)

P (Y |β(j),Σ(j),Mj) = (2π)−
Tn
2 |Σ(j)|−

T
2 exp

{

−
1

2
(y − Z(j)β(j))′(Σ(j) ⊗ IT )

−1(y − Z(j)β(j))

}

,

(7)

where IT is an identity matrix of dimension T .

3.2 Prior

For every model Mj we define a model prior p(Mj), a prior distribution for Σ(j) given Mj

p(Σ(j)|Mj) and a prior distribution for the slope parameters β(j) givenMj and Σ(j) p(β(j)|Mj ,Σ
(j)).

Firstly, we consider the model prior. The model prior probability is given as follows

p(Mj) ∝ q|Mj|(1− q)n
2−|Mj |, (8)

where q is the prior probability that a variable is included and |Mj | is the total number of

included variables in all equations. We set q = 0.50, which implies that every model has the

same prior probability

p(Mj) =
1

n2
. (9)

This is the standard choice in the literature, see for example Avramov (2002). As a robustness

check, we also consider putting a beta-prior on q as in Ley and Steel (2009). We postpone

further details on the robustness check until section 7.1.

Secondly, we consider the prior on the error covariance matrix. In general we cannot use

improper priors for the coefficients within a model if we use BMA techniques. However, since

all elements of Σ(j) are common to every model Mj , we can choose a standard improper prior

for Σ(j). Therefore, we choose the standard improper Jeffrey’s prior for Σ(j)

p(Σ(j)|Mj) ∝ |Σ(j)|−
n+1
2 . (10)

Finally, we look at the prior on the slope coefficients. The different elements of β(j) are

not common to all considered models. Choosing an uninformative prior for β(j)|MjΣ
(j) would

therefore lead to an ill-defined posterior odds ratio
P (Mj |Y )
P (Mi|Y ) . Hence, we choose a proper prior

distribution instead

p(β(j)|Σ(j),Mj) ∼ N(m(j), gV (j)), (11)
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i.e. a multivariate normal distribution with k(j) × 1 mean vector m(j) and covariance matrix

gV (j) with scalar g and k(j) × k(j) matrix V (j).

The prior mean m(j) consists of 1s and 0s. Most elements are equal to 0. Only the prior

means on the slope coefficient of the most persistent lagged predictor variables (the dividend-

to-price ratio, the book-to-market ratio, the price-earnings ratio, the smoothed nominal yield,

the yield spread, the credit spread, net stock issues and the stock return variance) are set equal

to 1 in their own equations. This prior mean reflects the prior belief that excess stock and bond

returns are unpredictable and that the persistent predictor variables follow a random walk. The

prior choice expresses a degree of skepticism about the predictability of stock returns as in

Kandel and Stambaugh (1996) and Wachter and Warusawitharana (2009).

The choice of the prior covariance matrix gV (j) is less straightforward. We let V (j) depend

on data Z(j) and on covariance matrix Σ(j)

V (j) =
(

Z(j)′(Σ(j) ⊗ IT )
−1Z(j)

)−1
. (12)

In the special case where the explanatory variables Z
(j)
i for equation i are equal to Z(j∗) for all

i, V (j) = Σ(j) ⊗
(

Z
(j∗)′

1 Z
(j∗)
1

)−1
. Our prior for β(j)|Mj ,Σ

(j) is an empirical Bayes prior. We

choose this prior because of two important reasons. Firstly, the prior is not sensitive to linear

transformations of the data. Secondly, the prior covariance matrix (accurately) reflects the belief

that the slope coefficients are strongly correlated. If instead we would specify a diagonal prior

covariance matrix, we would set the prior correlation between slope coefficients equal to zero

while in fact the slope coefficients are strongly correlated in the data. This conflict of information

between the data and the prior would lead to a distorted posterior distribution with unintended

consequences. The main drawback of letting V (j) depend on Σ(j) is that it complicates the

MCMC algorithm that we use to calculate the results.

Scalar g determines the strength of the prior information within a model. A high g means

that we are relatively uninformative about the parameters within a model. Therefore, it would

seem natural to set parameter g to a very high number, e.g. g = 106. However, Fernandez, Ley,

and Steel (2001) show that setting g equal to such a high value in order to be uninformative

about the coefficients within a model implies that we are in fact very informative about the

models that receive high posterior probability. It would mean that we put a lot of posterior

probability on models with a small number of explanatory variables.10 Fernandez, Ley, and

Steel (2001) suggest to set g = T when the square of the maximum number of considered

explanatory variables per equation is smaller than T . Therefore, we set g = T , which means

that the prior contains as much information as one observation. As a robustness check, we

also consider putting a prior on g. Further details on the robustness check are postponed until

section 7.1.

10By looking at equation (16) in the next section (the expression for the marginal likelihood conditional on
Σ(j)), we see that g acts as a penalty factor for larger models. The larger g, the more large models are penalized.

9



3.3 Posterior

We want to estimate the posterior model probabilities p(Mj|Y ), the posterior distributions for

the slope coefficients p(β(j)|Y,Mj) and the posterior distributions for the error covariance matrix

p(Σ(j)|Y,Mj). Unfortunately, none are analytically available in our setting. Therefore, we have

to obtain the posterior distributions through MCMC simulation techniques. In order to be able

to use the MCMC techniques that are introduced in the next section, we have to derive several

expressions. The derivations themselves are shown in the appendix.

Let us firstly consider the posterior distributions of β(j). The properties of the posterior

distributions of p(β(j),Σ(j)|Y,Mj) or p(β(j)|Y,Mj) are unknown since the integrating constant

is unknown. However, the conditional posterior distribution p(β(j)|Y,Mj ,Σ
(j)) is analytically

available

p(β(j)|Y,Mj ,Σ
(j)) = N(β∗(j),M∗(j)) (13)

where

M∗(j) =

[(

1 + g

g

)

Z(j)′(Σ(j) ⊗ IT )
−1Z(j)

]−1

β∗(j) =
g

1 + g
β̂(j) +

1

1 + g
m(j)

β̂(j) =
(

Z(j)′(Σ(j) ⊗ IT )
−1Z(j)

)−1
Z(j)′(Σ(j) ⊗ IT )

−1y(j).

In the next section, we will use p(β(j)|Mj ,Σ
(j), Y ) in a Gibbs step.

Secondly, let us look at the posterior distribution for Σ(j). We do not know the integrating

constant for the conditional posterior p(Σ(j)|Y,Mj , β
(j)) or for p(Σ(j)|Y,Mj), but we know that

the conditional posterior is proportional to the following expression

p(Σ(j)|Y,Mj , β
(j)) ∝ |Z(j)′(Σ(j)⊗IT )

−1Z(j)|
1
2 |Σ(j)|−

T+n+1
2 exp

{

−
1

2
tr[(Σ(j))−1(E(j)′E(j) +

1

g
H(j))]

}

,

(14)

where

E(j) = (Y −W (j)B(j)
c )′(Y −W (j)B(j)

c )

W (j) = (Z
(j)
1 , Z

(j)
2 , ..., Z(j)

n )

H(j) = (B
(j)′

f −M
(j)′

f )′X ′X(B
(j)′

f −M
(j)′

f ),

B(j)
c =















β
(j)
1 0 . . . 0

0 β
(j)
2 . . . 0

...
...

...

0 0
... β

(j)
n















.

and where matrix B
(j)
f is an n × (n + 1) matrix. Elements of B

(j)
f are either equal to 0 when
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a variable is not included in the model or equal to its corresponding element in β(j).11 The

n× (n+1) matrix M
(j)′

f is similarly defined with respect to the prior means in m(j). Expression

(14) allows us to approximate the conditional posterior distribution using a Metropolis-Hastings

step in the next section.

Finally, let us consider the posterior model probability p(Mj|Y ). If we would know the

marginal likelihood p(Y |Mj), the posterior probability that model Mj is the true model could

be calculated as

p(Mj |Y ) =
P (Y |Mj)p(Mj)

∑

k P (Y |Mk)P (Mk)
. (15)

BMA papers that rely on simulation techniques to explore the model space (e.g. Fernandez,

Ley and Steel, 2001) use an MC3 algorithm to explore the model space. However, this is not

applicable in our setting, since p(Y |Mj) is not analytically available for a Seemingly Unrelated

Regression (SUR) model with arbitrary restrictions. We are only able to analytically calculate

p(Y |Mj) in a couple of limited cases, e.g. when the set of right-hand-side variables is equal

in all equations. Therefore, in the next section we develop an algorithm to explore the model

space that only requires us to know the ”conditional marginal likelihood” p(Y |Mj ,Σ
(j)). The

conditional marginal likelihood is analytically available

p(Y |Mj ,Σ
(j)) = (2π)−

Tn
2 |Σ(j)|−

T
2 (1 + g)−

k(j)

2 exp

{

−
1

2
(y′(Σ(j) ⊗ IT )

−1y)

}

exp

{

−
1

2

(

m(j)′ 1

g
V (j)−1m(j) − β(j)∗′M∗(j)−1β(j)∗

)}

.

(16)

3.4 Markov Chain Monte Carlo algorithm

We apply Markov Chain Monte Carlo techniques to estimate the posterior distributions p(Mj|Y ),

p(β(j)|Y,Mj) an p(Σ(j)|Y,Mj). The expressions we derive in the previous section allow us to

implement the algorithm. Suppose we are currently in iteration m with model Mj and suppose

that the current coefficients for model Mj in iteration m are β(j) and Σ(j).

The first step is to draw a new modelMl in iterationm+1. The modeling step is a Metropolis-

Hastings step and is based on a result in Godsill (2001) who shows that we can condition on

parameters that are shared between different models - Σ(j) in our setting - when drawing a

new model. Our method only requires that Σ(j) has a common interpretation and common

dimensions across models, but does not require that Σ(j) has the same posterior distribution

across different models. We randomly draw a proposal model from the neighbourhood of models

around Mj and then accept the model with acceptance probability α.

Assume that the current model has k(j) included variables. The algorithm proceeds as

follows.

1. Randomly select a proposal model M∗
l from all models with k(j) + 1 or k(j) − 1 variables.

11For example, if element (xs, DP ) is included, element (2,6) of B
(j)
f is equal to its corresponding value in β(j),

otherwise it is 0.
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2. Set Ml = M∗
l with acceptance probability

α = min

{

1,
p(M∗

l )p(Y |M∗
l ,Σ

(j))

p(Mj)p(Y |Mj ,Σ(j))

}

. (17)

Otherwise set Ml = Mj .

The appendix provides details on the calculation of the acceptance probability.

The step for drawing slope coefficients β(l) is more straightforward. It is a standard Gibbs

steps and is based on the conditional posterior we derived in the previous section. Note that we

condition on new model Ml and old draw Σ(j).

1. Draw β(l) using the conditional posterior in equation (13).

We do not know the integrating constant of the conditional posterior of Σ(l) and therefore cannot

use a standard Gibbs step. Instead, we draw Σ(l) using a Metropolis-Hastings step. As proposal

density, we use an inverted Wishart distribution that approximates the conditional posterior

density for Σ(l) as close as possible. Note that we condition on the new model Ml and the new

draw β(l).

1. Draw Σ(l)∗ according to iWishart(E(l)′E(l) +H(l), T + n+ 1).

2. Set Σ(l) = Σ(l)∗ with acceptance probability

α = min

{

1,
|Z(l)′(Σ(l)∗ ⊗ IT )

−1Z(l)|
1
2 |Σ(l)∗|

n+1
2

|Z(l)′(Σ(j) ⊗ IT )−1Z(l)|
1
2 |Σ(j)|

n+1
2

}

. (18)

Otherwise set Σ(l) = Σ(j).

The appendix provides details on the calculation of the acceptance probability. Note that we

use the parameterization of Bauwens, Lubrano, and Richard (1999) for the inverted Wishart

distribution.

3.5 Comparison to alternative specifications

In this section, we compare our weighted Bayesian Model Averaging specification to alternative

specifications that are proposed in the literature.

The first alternative specification is proposed in Avramov (2002). The models he considers

are VAR(1) models. Since his focus is mainly on short-horizon forecasting, he bases the posterior

model probabilities only on the stock return equation within the VAR(1) model. He mentions

”(..) the weighted predictive distribution makes use of posterior probabilities computed based

on the return generating process in Eq.(1)” (Avramov, 2002, page 432). The implication is that
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model uncertainty regarding the prediction of the predictor variables is not taken into account.

Therefore, given our long-run focus, we cannot use Avramov’s (2002) setting since it would

substantially underestimate the impact of model uncertainty for long horizons.

A second alternative specification is used in George, Ni, and Sun (2008). They suggest

a Bayesian stochastic search method to select restrictions in VAR models. They put a tight

prior centered around 0 on the slope coefficients of irrelevant right-hand-side variables instead

of considering models where irrelevant right-hand-side variable are excluded as in our setting.

The idea is that the use of such a prior sets the slope coefficient arbitrarily close to 0 such that

the effect of these variables is negligible. An issue with George, Ni and Sun’s (2008) approach

is the calibration of the tightness of the prior for each slope coefficient. They need to specify a

large number of additional prior hyperparameters and in our experience the results turn out to

be very sensitive to this calibration. If the prior is too tight the stochastic search algorithm does

not converge, while if the prior is too loose the effect of these variables could still be substantial.

Our method avoids the calibration of these parameters and therefore avoids these issues.

A third alternative specification is analyzed in Andersson and Karlsson (2008). They base

the posterior model probabilities on the actual forecasting performance of the variable of interest

at a certain horizon. Andersson and Karlsson’s (2008) method uses simulation techniques to

calculate the predictive performance of each individual model at each horizons. We do not use

their method, because of several reasons. Firstly, their approach is not feasible in our setting,

since we consider a very large number of models and it is impossible to calculate the predictive

performance of each model individually. Secondly, our objective is to find one combination of

models that describes the predictive distribution at different horizons, while their method leads

to different posterior model probabilities at different horizons. Thirdly, at long horizons we

cannot reliable calculate the predictive performance of individual models due to data limitations.

For example, if we consider a horizon of 30 years, the predictive performance of each model is

based on only two non-overlapping 30-year windows. This is clearly undesirable.

A fourth alternative method is proposed in Wright (2008). He considers models that regress

the variable of interest at time point t+k on right-hand-side variables at time point t for horizon

k. He uses these models to directly forecast variables k-period ahead (so-called direct forecasts).

We instead consider models that regress next period’s variable of interest on current right-hand-

side variables and iterate these models k-periods forward in order to get predictions at a k-period

horizon. We consider iterated forecasts because of several reasons. Firstly, Marcellino, Stock,

and Watson (2006) show that iterated forecasts outperform direct forecasts at longer forecast

horizons in an empirical analysis using macro-economic time-series. The iterated forecasts are

more efficient. Secondly, when k > 1 the overlapping nature of observations on the variable

of interest leads to serial correlation in the error term when one uses the models in Wright

(2008). This is an econometric issue one needs to take into account when using the direct

forecasting method. Thirdly, Wright’s (2008) method gives different forecasting models for

different horizons. We instead want to find a parsimonious model that describes the predictive

distribution of asset returns at different horizons. Finally, when the forecast horizon is large
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we cannot reliably estimate the model in Wright (2008). There are not enough non-overlapping

observations when we consider forecasting horizons of for example 30 years.

4 Estimation Results

As a first step we estimate the unrestricted VAR(1) - the model in equation (3) - on the full

data-set. Table 2 gives the OLS parameter estimates, its standard errors and the correlations

and standard deviations of the residuals.

[Table 2 about here.]

We focus on the most important results. Firstly, since the maximum eigenvalue of 0.9902 is

less than 1, the system is strictly-speaking stationary. However, since the value is close to 1, we

need to be careful in interpreting the frequentist t-statistics below. As mentioned above, this

does not have an impact on (the interpretation of) the posterior distributions. Secondly, the R2’s

in the equations for stock and bond returns are respectively 9.0% and 10.1%. This implies that

a large part of the return variation still remains unexplained. Thirdly, the t-statistics suggest

that the price-earnings ratio is the most important predictor of excess stock returns followed

by the book-to-market ratio, net stock issuance, the credit spread and the default premium.

Surprisingly, the popular dividend-to-price ratio is less important, but this can be due to the

fact that the dividend-to-price ratio, the book-to-market ratio and the price-earnings ratio are

highly collinear. Finally, the table shows that the dividend-to-price ratio, the book-to-market

ratio, the price-earnings ratio, the smoothed nominal yield, the yieldspread, the credit spread,

net stock issues and the stock variance are very persistent processes.

Next, let us consider the Bayesian Model Averaging (BMA) specification. Table 3 reports

the posterior probability that a right-hand-side variable is included in a particular equation

in the weighted BMA specification. The posterior probability of variable Y in equation X is

obtained by summing the posterior model probabilities of all models in which variable Y occurs

in equation X. The different equations are given in the different rows.

[Table 3 about here.]

Firstly, the table shows that the posterior probabilities vary a lot across equations. The

most extreme example is the stock variance. In 10 out of 12 equations, it is only rarely included

in the BMA model (see the last column), but in 2 out of 12 equations - namely the credit

spread equation and the stock variance equation itself - the stock variance is always included.

Hence, if we would exclude the stock variance from the set of predictors, the equation for the

credit spread would be misspecified. However, if we would include the stock variance in all

equations we would obtain inefficient estimates, since the stock variance has no predictive power

in most equations. Therefore it is clearly important that we allow the set of right-hand-side
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variables to differ across equations.12 Secondly, we conclude that the posterior probabilities

are only roughly related to the frequentist t-statistics that are reported in the previous table.

In some cases, there is a correspondence. For example, in most predictor equations the lag of

the dependent variable both has a high t-statistic and a high posterior probability. However,

let us also consider the dividend-to-price ratio, the book-to-market ratio and the price-earnings

ratio in the equation for stock returns. Although 2 out of 3 (the book-to-market ratio and

the price-earnings ratio) have high t-statistics, only 1 of them (the dividend-to-price ratio) is

frequently included in the weighted BMA model. The reason is that the dividend-to-price ratio,

the book-to-market ratio and the price-earnings ratio are highly collinear and therefore contain

almost the same information. The BMA specification therefore only includes one of them - the

dividend-to-price ratio - on average. Thirdly, the posterior probability that the system is non-

stationary is 6.2%. Although Barsky and De Long (1993) show that under certain assumptions

the dividend-to-price ratio is an I(1) process, our analysis shows that there is little evidence

for this claim. Fourthly, the table shows that between 2 - 4 variables out of 12 are on average

included in most equations. Hence, the full model clearly overfits the data. Fifthly, we see that

the dividend-to-price ratio and the credit spread are the most important direct predictors of

excess log stock returns. The marginal probabilities that these variables are included are larger

than 84% for both. Furthermore, the most important predictor of the T-bill rate is its own lag

and the most important predictor of excess bond returns is the yield spread.

Since the dividend-to-price ratio and the credit spread are by far the most important pre-

dictors of excess stock returns, it seems natural to conclude that the other 10 variables are not

important to model future stock returns. However, this is incorrect. To see this, let us again

consider the stock variance. The current value of the stock variance only predicts next period’s

stock returns with a posterior probability of 9.00%. However, note that if we want to predict

excess stock returns two periods in the future, we first have to be able to predict next period’s

credit spread and note that equation 10 in the table shows that the stock variance is the most

important predictor of next period’s credit spread. Hence, if we want to predict stock returns

two periods ahead, the stock variance is one of the most essential predictors of future stock re-

turns. If we would have only based model probabilities on the stock return equation, we would

have wrongly concluded that the stock variance is not an important predictor of stock returns.

Therefore, it is essential that model probabilities not only reflect which predictors accurately

predict next period’s stock returns, but also which predictors predict predictors itself.

There are more and more predictors that become important at longer horizons. Therefore,

we develop a measure to assess the importance of predictors of excess stock returns at different

horizons. We explain this measure using an example. Firstly, suppose that the considered

model is an unrestricted VAR(1) model with known slope coefficients A and suppress constants

12As an example, if we restrict the set of right-hand-side variables to be equal across all equations, the most
persistent predictor variables are always included. The reason is that the lags of the persistent predictors need
to be included to model the persistent predictor variables themselves. Since the right-hand-side variables are the
same for all equations in this example, the lags are included in all equations. This is clearly undesirable.
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for notational convenience. The following holds

Etyt+1 = Ayt (19)

Etyt+2 = A2yt
...

Etyt+k = Akyt.

We can use this result to calculate the importance of the right-hand-side variables for predicting

excess stock returns at different horizons in the following way. Suppose we want to analyze

whether the lagged book-to-market ratio is an important predictor of stock returns k periods in

the future. In order to do so, we firstly draw a model and a parameter draw from our posterior

distribution. Then, we rewrite our model as a restricted VAR(1) model and iterate the model

forward by k periods.13 Next, we check whether element (Xs, BM) of matrix Ak is different

from 0. If it is, the book-to-market ratio is a predictor of excess stock returns at horizon k for

this parameter draw in this particular model. We repeat this process N times for different model

and parameter draws. Finally, we calculate the fraction of draws for which the book-to-market

ratio is a predictor of excess stock returns. We use this fraction as a measure for the importance

of the book-to-market ratio for predicting excess stock returns at horizon k.

[Table 4 about here.]

Table 4 shows the measure for horizons up to 40 quarters. For a horizon of 1 quarter,

the measure is equal to the posterior probabilities that are given in table 3. When horizon k

increases, the measure substantially deviates from these probabilities. As argued before we see

that the stock variance becomes an important predictor of excess stock returns when horizon

k ≥ 2. All 12 right-hand-side variables become important at a horizon of 10 years. At these

long investment horizons variables either predict stock returns directly or predict the predictors

of stock returns or the predictors of the predictors of stock returns etcetera.

Table 5 reports the posterior moments of the coefficients of the weighted BMA model. The

table shows the posterior means and standard deviations of the slope coefficients in panel A and

the posterior mean of the covariance matrix of the residuals in panel B.14

[Table 5 about here.]

Firstly, the results in the table are roughly in line with table 3. The posterior means of

variables that are hardly ever included in the model are close to 0. Secondly, the table shows

that a higher credit spread implies a lower future excess stock return, while a higher dividend-

to-price ratio leads to a higher future excess stock return. Both signs are in line with the OLS

13Note that the different models we consider can easily be rewritten as restricted VAR(1) models with 0s in
place of excluded variables.

14The reported numbers are the unconditional moments, i.e. the posterior means of the coefficients are not
conditional on the inclusion of the variables in the model. When a variable is not included in a particular model,
the posterior mean is equal to 0 for that model.
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results. Next, the maximum eigenvalue of 0.9823 indicates that the system is stationary (using

the means of the parameters as estimates). Finally, the R2 of the equations for stock and bond

returns are respectively 2.33% and 5.45%. This is a lot lower than the R2’s we obtain when

we estimate the unrestricted VAR(1) model by OLS. This finding is not surprising, since the

BMA model only includes 3 variables on average per equation, while the full model includes 12

variables per equation. The full model clearly overfits the data.

The posterior model probabilities are conditional on the considered model space. The used

methodology could easily be extended to a larger model space. For example, if one believes

that the true model might be a VAR(2) model or might not be homoscedastic, we could in

principle include such models in the (extended) model space and apply the same methodology.

In fact, we can use exactly the same MCMC algorithm to incorporate the VAR(2) model. The

incorporation of heteroscedastic models is more difficult (we cannot condition on a constant

error covariance matrix anymore) but can be done.

How does the posterior distribution of the coefficients look like in the BMA specification?

Figure 1 shows the posterior distribution of the coefficient on the credit spread in the equation

for stock returns, (xs, Crspr).

The figure shows that the posterior distribution is clearly non-normal. Firstly, there is a

spike at 0. This spike corresponds to the probability that the credit spread is not included in

the stock return equation. Secondly, even when the credit spread is included in the model we

see that the posterior distribution is bi-modal. The bi-modality is caused by the presence or

absence of other variables in the model. In case the credit spread is included in the equations for

stock returns and the dividend-to-price ratio, the posterior distribution of (xs, Crspr) is equal

to the right bell-shaped curve in the figure. If the spread is only included in the stock return

equation, the posterior distribution is given by the left bell-shaped curve.

Do most variables occur independently from each other in the composite model? In order to

analyze this question we analyze the variables that occur jointly in the weighted BMA model

(these variables are complements) and the variables that occur disjointly in the weighted model

(these variables are substitutes). We use the measure developed in Ley and Steel (2007) to

quantify whether pairs of variables are complements or substitutes.

[Figure 1 about here.]

[Table 6 about here.]

Consider the prediction equation for excess stock returns. Let P (i) be the marginal probabil-

ity that variable i is included in this equation, P (j) be the marginal probability that variable j

is included and P (i
⋂

j) the probability that both variables are included. Ley and Steel’s (2007)

measure equals

Pij =
P (i

⋂

j)

P (i) + P (j)− 2P (i
⋂

j)
, (20)

where a high value (larger than 3) indicates that variables i,j occur jointly in the weighted

model and where small values (smaller than 1/3) indicate that variables i,j occur disjointly in
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the model.

[Table 7 about here.]

Table 6 reports Pij for pairs of variables i and j in the prediction equation for excess stock

returns. It reports the (posterior) jointness measure for a horizon of 1. The table shows that

there are hardly any pairs of variables that are complements except the dividend-to-price ratio

/credit spread pair with a Pij relatively close to 3. For all other pairs the Pij values are much

smaller than 1. Consider for example the dividend-to-price ratio/book-to-market ratio pair. A

Pij value of 0.0905 suggests that there is strong evidence that the dividend-to-price ratio and

the book-to-market ratio are substitutes in the stock return equation. This is not surprising,

since the correlation between DP and BM is very high.

The method we outline in the previous section to calculate the posterior distribution of the

composite BMA model can also be used to select one best model, i.e. the model with the highest

posterior probability. In the next sections, we compare the highest posterior probability model

with the overall weighted BMA model. Table 7 shows the variables that are included in the

highest posterior probability model and their posterior means and standard deviations.

The incorporated variables are roughly in line with the results in table 3. The posterior

probability of the highest probability model is not large, i.e. less than 0.001. This suggests that

the posterior probability is widely spread over many models and suggests that model uncertainty

is prevalent even after using more than 80 years of data.

5 The term structure of risk

In this section we consider the variance of the predictive distribution of future cumulative excess

stock returns. Since we are working with log stock returns, we can easily calculate cumulative

excess stock returns as follows

xs,t→t+K = xs,t+1 + xs,t+2.....xs,t+K ,

where xs,t→t+K is the cumulative excess stock return from period t to period t+ k.

The predictive distribution of cumulative excess stock returns is given in the following equa-

tion

p(xs,t→t+K |Y ) =

∫

p(xs,t→t+K |Y,Mj , β
(j),Σ(j))p(β(j),Σ(j)|Y,Mj)p(Mj |Y )d(β(j))d(Σ(j))d(Mj).

This distribution incorporates both parameter and model uncertainty. The first component is

the distribution of future stock returns conditional on a model and parameter values. This

distribution is normal, ignores both parameter and model uncertainty and is used in Camp-

bell, Chan, and Viceira (2003) and Campbell and Viceira (2005) among others. The second

component is the posterior distribution of the parameters conditional on a particular model.

We use it to include parameter uncertainty by integrating over the parameter space. Barberis
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(2000) and Hoevenaars, Molenaar, Schotman, and Steenkamp (2007) also consider settings that

incorporate parameter uncertainty. The last component is the posterior model probability. We

use this component to sum over the model space and take model uncertainty into account. This

is unique to our setting.

We present the results using the term structure of risk. It plots the annualized standard

deviation of the predictive distribution of cumulative excess stock returns versus the investment

horizon. If annualized volatility at long horizons is smaller than at short horizons, stocks are

safer in the long-run. Campbell and Viceira (2005) show in a setting without parameter uncer-

tainty that this term structure is downward sloping due to the mean reversion in stock returns.

Hoevenaars, Molenaar, Schotman, and Steenkamp (2007) show that the incorporation of pa-

rameter uncertainty increases the volatility, that it leads to an upward sloping term structure

for long investment horizons, but that the annualized volatilities at horizons up to 50 years are

still lower than the annualized volatility at investment horizons around one year. Both papers

therefore conclude that stocks are less volatile in the long-run than in the short-run.

Pastor and Stambaugh (2010) consider a different framework. They explicitly take into

account that predictor variables are imperfect and that linear functions of a small number

of predictor variables are likely to be less than perfectly correlated with the (unknown) true

expected future stock return. Pastor and Stambaugh (2010) show that stocks are much riskier

in the long-run than in the short-run in that setting.

In this paper, we consider a different setting than in the previously mentioned papers. We

make the basic assumption that the expected stock return can be captured by a linear combina-

tion (of a subset of) 12 predictor variables. Hence, instead of assuming that the expected stock

return is imperfectly correlated with a small number of predictor variables, we assume that it is

perfectly correlated with a subset of a much larger number of predictor variables. We explicitly

take into account that we are uncertain about the correct model and that we also face parameter

uncertainty.15

[Figure 2 about here.]

Firstly, let us analyze whether stocks mean-revert in our setting. An indication for mean

reversion is that there is a negative correlation between a shock to current stock returns and a

shock to the expectation of future stock returns. Our objective is to find the posterior distribu-

tion of this correlation. We explain this measure using an example. Suppose for a moment that

the model we consider is an unrestricted VAR(1) model and suppress constants for notational

convenience

yt+1 = Ayt + ǫt. (21)

Define A2 as the second row of A. Obviously, ǫt,2 is the shock to excess stock returns. Further-

more, since A2yt is the predicted value of next period’s stock return, A2ǫt is the shock to the

15In this section, we plot the term-structure of risk for excess stock returns. The term structure of risk for real
stock returns lies strictly above the term structure of risk for excess stock returns and is steeper due to the strong
mean-aversion in the real T-bill rate.
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expectation of next period’s stock return. Therefore, the correlation between A2ǫt and ǫt,2 is

our measure for mean-reversion. Our aim is to find the posterior distribution of this correlation.

Figure 2 plots this posterior distribution for our weighted BMA model. The figure shows

that the posterior probability that the correlation is negative is 98.4% which means that it is

very likely that stocks exhibit mean reversion. Furthermore, the probability that the correlation

is smaller than -0.5 is still 75.7%. Hence, there is a lot of evidence that there is very strong

mean reversion in stock returns.

Next, we analyze the term structure of risk. We decompose the (annualized) total predictive

variance of excess log stock returns in the (annualized) mean of the conditional variance and the

(annualized) variance of the conditional mean. Note that the conditional mean and conditional

variance are conditional on a particular model and set of parameters.

1

K
V (xs,t→t+K |Y ) =

1

K
E(V (xs,t→t+K |Y,Mj , β

(j),Σ(j))) +
1

K
V (E(xs,t→t+K |Y,Mj , β

(j),Σ(j)))

Figure 3 plots the term structure of risk using the weighted BMA model when variables are

set equal to their historical average. It shows total volatility, the square root of the mean of the

conditional variance and the volatility of the conditional mean. In order to obtain the posterior

distribution, we estimate the specification on the full data-set.

[Figure 3 about here.]

[Figure 4 about here.]

The picture shows that stocks are almost as risky in the long-run as in the short-run. The

annualized total volatility is 22% at short horizons and around 20% at horizons up to 30 years.

What effects play a role? Firstly, the mean-reversion effect is important. If a long-term investor

sees a bad stock return, he knows that on average the bad stock return will be followed by a

better stock return due to mean-reversion. This leads to a negative correlation in stock returns

and makes stock returns safer in the long-run. The second effect is the parameter and model

uncertainty effect. If a long-term investor sees a bad stock return, it could also be the case

that the true model and the true parameter set (the ones he does not know) are relatively

unfavourable for him. Since this will persist in the future as well, this will create a positive

autocorrelation in stock returns in the eyes of an investor who does not know the true model

and does not know the true parameter values. Therefore, the model and parameter uncertainty

effects make stock returns riskier in the long-run. Hence, whether stocks are riskier or safer in

the long-run depends on the magnitude of both opposing effects and is an empirical matter. In

the figure, mean-reversion still dominates parameter and model uncertainty.

The line that depicts the volatility of the conditional mean in the figure (the red line) shows

the parameter and model uncertainty effect. Different models (and parameters) give different

predictions of future stock returns, i.e. they have different conditional means. The volatility of

these different conditional means therefore depicts the parameter and model uncertainty effect.

At short horizons the parameter and model uncertainty effect has a negligible impact, because
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at short horizons the different models predict very similar future stock returns. However, at

longer horizons the parameter and model uncertainty effect becomes really important, since the

different models predict very different trajectories of future stock returns. At a horizon of 30

years this effect plays a relatively large role, but not enough to make stock returns riskier in

the long-run. The other component of total volatility - (the square root of) the mean of the

conditional variance (green line) - depicts the residual component of total volatility. It is largely

downward sloping due to mean reversion.

The figure shows the term structure of risk when the variables are set equal to their historical

average. In that case, the different models agree on future stock returns and therefore the

parameter and model uncertainty effects are not large. If variables deviate substantially from

their historical average, the different models predict very different future stock returns. In

that case parameter and model uncertainty becomes really important. Figure 4 plots the term

structure of risk using the weighted BMA model when variables are set equal to their Q4 2008.

At this date, we were in the middle of the sub-prime mortgage crisis and all predictors deviated

substantially from their historical average.

If we compare the two figures, we see that the mean of the conditional variance turns out to be

exactly equal to its values in the previous figure. However, the variance of the conditional mean

changes substantially. As expected we see that the variance of the conditional mean becomes

much larger when the variables deviate significantly from their historical average. Figure 4 also

shows that the variance of the conditional mean dominates the mean of the conditional variance

as the most important component at a 30 year horizon. Total volatility increases due to the

larger variance of the conditional mean. It is again 22% for short horizons, decreases slightly

for medium horizons and increases up to 28% at a horizon of 30 years. Hence, the volatility at

a 30-year horizon is larger than at short horizons. Hence, stocks are not safer in the long-run

when we incorporate parameter and model uncertainty and when predictors deviate a lot from

their historical average. The figure also shows that parameter and model uncertainty is not

important at short horizons.

How does total volatility of stock returns change over time when predictor variables change

over time? In order to answer this question, we plot a time-series of total volatility for different

investment horizons in figure 5. The dates on the x-axis indicate the value of the predictor

variables we use to calculate the term structure of risk. The posterior distribution is obtained

by estimating the composite specification on the full data-set.

[Figure 5 about here.]

Firstly, annualized total volatility at an investment horizon of 1 quarter is not very sensitive

to values of the predictor variables, i.e. it is relatively constant over time at a value of around

22%. Parameter and model uncertainty is not important, since volatility hardly changes over

time. Secondly, we conclude that the annualized volatility at an investment horizon of 15 years

is always lower than the volatility at shorter horizons. Its average value is 18%. Parameter

and model uncertainty turns out to be important at this horizon, since volatility changes quite
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a lot over time. The mean-reversion effect however still dominates the parameter and model

uncertainty effect at this investment horizon. Finally and most interestingly, the annualized

volatility at an investment horizon of 30 years indicates that parameter and model uncertainty

is really important, because it shows a lot of variation over time. The figure also shows that

the parameter and model uncertainty effect dominates the mean-reversion effect when predictor

variables are rather extreme, such as in the recent crisis or in the crisis of 1929. Annualized

volatility can be as high as 30%. However, in stable times such as the 1960s, annualized volatility

at a 30-year horizon is very close to annualized volatility at a 1-quarter horizon. We clearly see

that the riskiness of stocks (as measured by the variance of the predictive distribution) changes

a lot over time even though we only consider homoscedastic models!

These results only partially confirm results in Pastor and Stambaugh (2010). We also find

that stocks can be riskier in the long-run than in the short-run. However, we find that there are

also periods in which stocks are safer in the long-run.

The previous three figures consider a setting where we include both parameter and model

uncertainty. How do these figures change if we ignore model uncertainty? In order to answer

that question, figure 6 plots the term structure of risk for the highest posterior probability model

if variables are set equal to their historical average. In this setting, only parameter uncertainty

plays a role.

[Figure 6 about here.]

[Figure 7 about here.]

The decomposition shows that the mean of the conditional variance is the biggest component

of the total variance at all horizons. The total volatility is around 22% for short investment

horizons, decreases to 15.5% for moderate investment horizons and slightly increases again to-

wards 17% for investment horizons up to 30 years. Results suggest that stocks are safer assets

in the long-run.

Figure 7 shows the term structure of risk when variables are set equal to Q4 2008 values.

The figure shows that the mean of the conditional variance is again exactly equal to the values in

the previous picture. It also shows that the variance of the conditional mean increases slightly.

Therefore, the total volatility is slightly higher than in the previous figure. The annualized

volatility at the 30 year horizon is around 18%. Hence, if we ignore model uncertainty we

(incorrectly) find that stocks are safer in the long-run than in the short-run no matter how we

set the predictor variables. This confirms the results in Hoevenaars, Molenaar, Schotman, and

Steenkamp (2007): parameter uncertainty increases risk at longer horizons but does not change

the fact that stocks are safer in the long-run.

In the previous section we conclude that the full model - the unrestricted VAR(1) that

includes all variables - overfits the data considerably. Since this model contains too many

parameters, we expect that this model significantly overestimates the uncertainty of future stock

returns. Do the term structures of risk for the full model confirm this suspicion? Figures 8 and
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9 show the term structures of risk when variables are set equal to respectively their historical

average and the end-of-sample values.

[Figure 8 about here.]

[Figure 9 about here.]

If we compare the results in the figures with the other figures in this section, we clearly see

that the full model - as expected - overestimates the true uncertainty considerably, especially at

the end of the sample. Figure 9 shows that the parameter uncertainty effect - depicted as the

volatility of the conditional mean in the figure - is extremely high at this point in time.

Note that the full model is one of the models that we consider in calculating the BMA

specification. However, it receives an extremely low weight in the composite model, because it

contains way too many parameters. Therefore, the uncertainty in the full model plays a negligible

role in the composite specification. Hence, if one only considers the full model without excluding

irrelevant variables, one considerably overestimates the true uncertainty an investor faces when

predicting stock returns.

We conclude that the incorporation of model uncertainty has an important effect on the

variance of the conditional mean. This component dominates at longer horizons when the

economy deviates from its steady state, i.e. when predictor variables are not equal to their

historical average. When one recognizes model uncertainty as an important risk factor, the

total volatility at long horizons could be substantially larger than at short horizons. We also

find that parameter and model uncertainty has a negligible impact on short horizons.

6 Optimal portfolio choice

In this section we investigate the impact of model uncertainty on the asset allocations of long-

term investors. Therefore, we start with analyzing the mean, variance, skewness and kurtosis

of the predictive distribution in a setting without parameter and model uncertainty, in a set-

ting with only parameter uncertainty and finally in a setting with both parameter and model

uncertainty. Next, we consider the asset allocations in these settings.

We consider a risk-averse investor who chooses a buy-and-hold portfolio such that her ex-

pected utility is maximized and is allowed to invest in the real T-bill rate, in stock returns and in

bond returns. As a utility function, we choose power utility with constant relative risk aversion

parameter γ > 1

max
wt

Et

(

W
1−γ
t+K

1− γ

)

(22)

subject to the budget constraint

Wt+K =

3
∑

i=1

wiRi,t+K ,
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where w is the vector of three portfolio weights, Wt+K is the terminal wealth at time point

t+K, K is the investment horizon and Ri,t+K is the cumulative gross return for asset i over K

periods. We assume that short-selling is not allowed such that 0 ≤ wi ≤ 1 ∀i.

We solve the maximization problem in equation (22) by using simulations. As a first step, we

set-up a grid of portfolio weights. Secondly, we draw N scenarios from the predictive distribution

of asset returns. Next, we calculate the average realized utility for all scenarios and for all grid

points. Finally, we choose the asset allocation that maximizes average realized utility. It turns

out that it is troublesome to accurately calculate the kurtosis of the predictive distribution and

the asset allocations for investment horizons beyond 20 years. Therefore we limit the maximum

investment horizon to 20 years to guarantee the accuracy of our results.

The predictive distribution of asset returns has fat tails if we either include parameter or

model uncertainty. Therefore, the expected utility of all portfolios is −∞ unless we make

additional assumptions, because the simple returns for all three assets can get arbitrarily close

to -100%. In order to take this issue into account, we make the additional assumption that

the quarterly real T-bill rate is not lower than -10%. This implies that the investor cannot go

bankrupt if she invests a positive amount in the T-bill and makes sure that expected utility is

finite for at least some portfolios.

[Figure 10 about here.]

Firstly, we consider the predictive distribution of future stock returns. Figure 10 plots the

mean, standard deviation, skewness and kurtosis of the predictive distributions of excess stock

returns for three different settings. The first setting - Plug-in - is based on the highest posterior

probability model and ignores parameter uncertainty. The second setting - Parameter uncer-

tainty HPD - is also based on the highest posterior probability model, but includes parameter

uncertainty. The third setting - BMA - is based on the weighted BMA model and includes

both parameter and model uncertainty. The figure plots these moments versus the investment

horizon when the variables are set equal to their historical average.16

The figure shows that the four moments are very similar for short-investment horizons.

However, if the investment horizon increases we see that the moments for the BMA predictive

distribution deviate quite a bit from the moments for the other two distributions. The incor-

poration of model uncertainty leads to a slightly smaller mean, a higher standard deviation,

slightly more negative skewness and a much higher kurtosis at long investment horizons, com-

pared to the other two specifications. The figure shows that especially the even moments - the

standard deviation and the kurtosis - are quite a bit different at long horizons. The distribution

for the BMA specification clearly deviates from the normal distribution. The third and fourth

moment for the plug-in method are respectively 0 and 3 for all investment horizons, since this

distribution is normal.

16The predictive distribution of all asset returns, including the correlations between asset returns, determines
the asset allocations. For the sake of brevity, our main focus in this section is on the predictive distribution of
excess stock returns.
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Figure 11 plots the moments of the predictive distributions when the variables are equal to

their values at the end of 2008. Again, the figure shows that the four moments are almost exactly

equal at short-investment horizons. However, at longer investment horizons, the moments differ

a lot. The difference is much larger than in the previous figure. Firstly, the means of the specifi-

cations are very different. The reason is that the different models give very different predictions

when predictor variables deviate from their historical average. The weighted BMA model takes

all of them into account, whereas the highest probability model ignores the information in other

models. At the end of 2008, the highest probability model is more optimistic about future stock

returns than the weighted BMA model.17 The means also deviate substantially from the means

in figure 10. Secondly, the figure shows that the variance of the predictive distribution for the

weighted BMA model is a lot higher than for the highest probability model. Whereas the predic-

tive variance for the highest probability specification that includes parameter uncertainty hardly

increases compared to figure 10, the predictive variance for the weighted BMA model increases

substantially. The variance for the plug-in specification on the other hand is exactly the same

as in the previous figure. This is consistent with the results in the previous section. Thirdly, the

predictive distribution for the weighted BMA specification is negatively skewed while the speci-

fications based on the highest probability model are (close to being) symmetric. Note that in the

previous figure the distribution based on the BMA specification is also very close to symmetric.

Finally, the kurtosis for the weighted BMA specification increases substantially compared to the

previous figure. Hence, the figure shows that both the even and odd moments are quite a bit

different at long horizons. Especially the distribution for the BMA specification is very different

from the normal distribution.

[Figure 11 about here.]

[Figure 12 about here.]

How do the moments for the predictive distribution using the BMA specification change

over time when variables change over time? Figure 12 plots a time-series of these moments at

investment horizons of 1 quarter, 10 years and 20 years. The figure shows that all four moments

change considerably over time, especially at longer investment horizons. It is remarkable how

much the kurtosis changes over time. Also note that the distribution can be both negatively

and positively skewed.

The previous figures show that there are substantial differences in the predictive distributions

between the three different specifications. The BMA specifications leads on average to a lower

mean, higher standard deviation, more negative skewness and higher kurtosis than the other two

specifications. Since a risk-averse investor dislikes all of this, we expect that such an investor

invests less of her money in the stock market when model uncertainty is included. We also

expect that the differences between specifications are larger when variables deviate from their

historical average.

17Note that the figures show the predictive distributions of excess stock returns. In other words, a mean of zero
means that the stock returns increase on average as much as the real T-bill rate.
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[Figure 13 about here.]

Figure 13 plots the asset allocations versus the investment horizon for an investor with risk

aversion parameter γ = 5, where predictor variables are set equal to their historical average.

The figure shows that allocations are remarkably similar at short investment horizons no matter

what method we use, i.e. neither parameter nor model uncertainty significantly changes asset

allocations. However, if we consider longer horizons we see that both parameter and model

uncertainty play an important role. Firstly, consider the differences in allocations between the

highest posterior probability model with and without parameter uncertainty. The plot shows

that the asset allocation to stocks is up to 12% lower when we take parameter uncertainty

into account. Secondly, consider the difference in allocations between the highest posterior

probability model incorporating parameter uncertainty and the weighted BMA model. The

allocation to stocks is 20% lower when we incorporate model uncertainty. Furthermore, the

graph shows that the allocation to stocks decreases when the investment horizon approaches

20 years. Clearly, an investor with a longer horizon should not always invest more in the stock

market than an investor with a shorter horizon, since the stock allocation of a long-term investor

is remarkable similar to the allocation of a short-term investor. A long-term investor replaces

the bonds in her portfolio with investments in the T-bill rate compared to the investment of a

short-term investor.

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

What happens with asset allocations when we consider the optimal buy-and-hold asset allo-

cations at the end of the sample? Figure 14 plots these allocations at the end of 2008. Firstly,

the figure indicates that allocations to stocks are on average a lot lower compared to figure

13. Whereas the allocations range between 35% and 70% when predictor variables are equal to

their historical average, these allocations vary between 0% and 45% when predictor variables

are equal to their end-of-sample values. Secondly, the three methods lead to different asset

allocations even at short horizons. For short investment horizons up to 2 years, the specification

based on the weighted BMA model implies a 0% allocation to stocks, whereas the specifications

based on the highest probability model imply allocations up to 30%. This is mainly due to

the difference in means across specifications. Thirdly, at long investment horizons the impact

of model uncertainty is again larger than the impact of parameter uncertainty. Incorporating

parameter uncertainty lowers the allocation to stocks by 10% for the highest probability model,

while the incorporation of model uncertainty decreases the stock allocation by 35%. Finally,

the allocation to stocks again decreases when the investment horizon becomes very long. If we

include model uncertainty, a long-term investor should not allocate more to the stock market

than a short term investor.
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How much expected utility do long-term investors obtain from investing in the stock market

and how do these expected utilities change across specifications? In order to answer these ques-

tions, figure 15 and 16 plot the certainty equivalence (a monotonic transformation of expected

utility) against the investment horizon for the three specifications.18 We calculate the portfolio

weights using the HPD model without parameter uncertainty, the HPD model with parameter

uncertainty and the BMA specification. All strategies are evaluated using the BMA specifica-

tion. The portfolio weights based on the BMA specification therefore give by definition the best

performance.

Both figures show that the three different strategies give the same expected utility (and

certainty equivalent) at short horizons. At longer horizons, there are differences. The strategy

that only includes parameter uncertainty approximates the optimal strategy based on the BMA

specification the best. However, the loss in certainty equivalence is still considerably: 15% when

predictor variables are at their historical average and 20% when they are equal to their end-of-

sample values. The losses when ignoring both parameter and model uncertainty are respectively

23% and 38%. These are quite big losses if we compare them to the magnitude of the certainty

equivalences themselves.

The most remarkable result is that the certainty equivalent is smaller than 1 for all three

specifications if the investment horizon is sufficiently large and if the variables are set equal to

their end-of-sample values. The reason is that risk-averse investors dislike the extreme fat tail

of the predictive distribution at the longest horizons. It is very important to recall that all asset

returns are in real terms. Hence, a certainty equivalent of 1 means that an investor is indifferent

between either following the strategy or getting 100% of its starting wealth at the end of the

horizon in real terms. Certainty equivalents less than 1 therefore mean that an investor who

follows the optimal strategy would rather pay a lot for an inflation-indexed bond than that he

would follow this strategy. An important implication is that it would be very valuable for an

investor who faces both parameter and model uncertainty to have the ability to invest in these

inflation-indexed bonds.

7 Robustness tests

In this section, we consider several robustness checks. In the first section we recalculate the

posterior distribution using a different prior distribution. In the second section we recalculate

the posterior distribution at different points in time.

7.1 Different prior distribution

In this section, we check the prior robustness of our results by comparing the posterior distri-

bution in section 4 with a posterior distribution based on a different prior. We use a different

model prior and we use a different prior on the slope coefficients.

18Note that the certainly equivalents are not annualized.
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Firstly, let us consider a different prior for the model prior probability. In the previous

sections, we use the following prior

p(Mj |q) ∝ q|Mj |(1− q)n
2−|Mj |,

where q is set equal to 0.50. This choice implies that all models are given the same prior

probability.

The choice of q is arbitrary and therefore we consider an alternative choice for q. Instead of

setting q equal to a constant, we put a prior on q as in Ley and Steel (2009). We follow their

recommendation and use the following prior for q

p(q) = Beta(1, b), (23)

where we choose b in such a way that the prior mean of the model size is equal to n2

2 , i.e. half

the size of the full model. This prior lets the data determine a value for q instead of fixing a

value for q a priori. Ley and Steel (2009) show that this prior leads to a posterior that is very

robust to the choice of the prior parameter, i.e. the choice of b. Note that this prior choice does

not lead to a more complicated MCMC algorithm. The only aspect in the MCMC algorithm

that changes is that we use a different marginal model prior in the model selection step of the

MCMC algorithm, refer to section 3.4 for details on the MCMC algorithm.

Secondly, let us consider a different prior for the slope coefficients. In the main part of the

paper, we use the following prior

p(β(j)|Σ(j),Mj) = N(m(j), gV (j)),

where m(j) and V (j) are given in section 3.2 and where g is set equal to T .

[Table 8 about here.]

[Table 9 about here.]

The choice for g is an important choice. This parameter determines on one hand how much

information the prior contains within a model, but on the other hand it also determines the

penalty factor for larger models. Therefore, we cannot choose g too large or too small. We put a

prior on g to let the data determine a value for g instead of specifying it a priori. We choose the

following proper rather flat inverse gamma prior for g (using the parameterization of Bauwens,

Lubrano, and Richard (1999) for the inverse-gamma distribution)

p(g) = iG(0.01, 0.01). (24)

Liang, Paulo, Molina, Clyde, and Berger (2008) also consider several priors on the g parameter

in Zellner’s g-prior in standard linear regression models.
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In order to draw g we need to introduce an extra step in our MCMC algorithm. It is easy

to show that we can draw g using the inverse gamma distribution in a Gibbs-step

p(g|Y,Mj , β
(j)) = iG((β(j) −m(j))′V (j)−1(β(j) −m(j)) + 0.01, k(j) + 0.01). (25)

Since parameter g is common to all models, we condition on parameter g in the model selection

step in the MCMC algorithm. The marginal likelihood in equation (16) now conditions on both

Σ(j) and g, but the expression for the marginal likelihood itself stays exactly the same.

Table 8 shows the posterior probability that a variable is included in an equation for the

alternative prior specification. If we compare this table to table 3, we see that most probabilities

are very similar for both prior specifications. For example, the dividend-to-price ratio and

the credit spread are still the most important direct predictors of stock returns. However,

the posterior probability for the credit spread is lower and the posterior probability for the

dividend-to-price ratio is higher than in table 3. Table 9 shows the posterior means and standard

deviations for the alternative specification. If we compare the posterior moments with the

posterior moments in table 5, we again see that these posterior moments are in general very

similar. Since the posterior distribution of the parameters is not very sensitive to the exact prior

choice, we conclude that our results are robust to the prior choice.

7.2 Posterior moments over time

[Figure 17 about here.]

[Figure 18 about here.]

[Figure 19 about here.]

[Figure 20 about here.]

In this section, we calculate the posterior distribution at different points in time in order to

check the stability of our results. We do this as follows. We calculate the posterior distribution

in the same way as in section 4 but by considering an expanding window of observations. In

other words, we re-estimate our BMA specification on data-sets that contain more and more

observations.

Figures 17 and 18 contain respectively the posterior probability that the dividend-to-price

ratio is included in the equation for excess stock returns and the probability that the credit-

spread is included in the equation for excess stock returns. The date on the horizontal axis

indicates the last included observation in the subsample. Firstly, both figures show that the

probabilities are quite stable after 1960. Furthermore, in both cases the probabilities decrease

in the last 5 years. This is not surprising since the last 5 years were rather turbulent. Figures

19 and 20 show similar figures for the posterior means of these coefficients. These figures largely

confirm the results above. Firstly, the posterior means stabilize around 1960. Furthermore,
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we see that the means for both coefficients are shrunk towards 0 in the last years, because the

probability that the variable is included in the BMA specification decreases in these years.

All together we conclude that the posterior results are relatively stable over time as long as

we estimate the specification on 40 years of data or more.

8 Conclusion

We develop an estimation framework that is able to include model uncertainty over long-term

predictions using Bayesian Model Averaging (BMA). Our methodological framework allows us

to consider model uncertainty in the prediction equations for both asset returns and predictor

variables. The latter is very important when considering the impact of model uncertainty on

the long-run predictability of stock returns. A variable, that is a good predictor of asset returns

but cannot be predicted itself, is useless for a long-term investor.

Our results show that the credit spread and the dividend-to-price ratio are the most im-

portant predictors of stock returns at short horizons. However, at longer horizons, all variables

are important for predicting long-horizon stock returns, either by directly predicting stock re-

turns or by indirectly predicting the predictors of stock returns. If one would instead only

base the inclusion of predictor variables on the prediction equation for stock returns, one would

wrongly conclude that most predictor variables are not important for modeling stock returns.

Furthermore, our results clearly show that model uncertainty is substantial, since the posterior

probability mass is widely spread across many models.

The incorporation of model uncertainty has important implications for the term structure of

risk. At long horizons, model uncertainty increases the variance of the predictive distribution of

stock returns substantially, especially when predictor variables deviate significantly from their

average values. The fact, that different models give significantly different predictions of stock

returns, increases the variance of the predictive distribution. In extreme events such as the

great depression and the subprime mortgage crisis, long-run stock returns can be significantly

riskier than short-run stock returns. However, in relatively stable periods such as the 1960s,

stock returns are safer in the long-run than in the short-run. Furthermore, we find that model

uncertainty only has a negligible impact in the short-run.

The incorporation of model uncertainty also leads to significantly different asset allocations

(up to 35%) at longer horizons compared to specifications that ignore model uncertainty. The

reason is that the inclusion of model uncertainty leads to a predictive distribution of excess

stock returns with a lower mean, higher standard deviation, more negative skewness and higher

kurtosis, especially when predictor variables deviate from their own average. Also, despite the

homoscedasticity of our models, the mean, variance, skewness and kurtosis of the predictive

distribution of asset returns change substantially over time. Furthermore, we find that model

uncertainty hardly has an impact on asset allocations for short-horizon investors. Finally, our

results show that the certainty equivalent of the optimal buy-and-hold strategy for a long-horizon

investor can be lower than 1 for sufficiently long investment horizons. The incorporation of model
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uncertainty makes the asset market too risky at long horizons in the eyes of an investor who

recognizes that she does not know the true model and true parameters. This implies that such

an investor would be willing to pay a lot for an inflation-indexed bond.

In this paper we consider the impact of model uncertainty in a setting where models only

differ in the variables that are included and where we estimate the specification on a relatively

long data-set. Of course, we could also extend the model space by considering non-linear models,

stochastic volatility models etcetera. We can also look at the impact of model uncertainty if we

use shorter data sets. It is likely that the impact of model uncertainty is larger in such settings,

because we would consider more models and less information (data). The results in this paper

can therefore be interpreted as a lowerbound on the true impact of model uncertainty.
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A Posterior distribution and MCMC algorithm

Firstly, we derive the posterior distributions that are used in the paper. The notation is con-

sistent with the notation introduced in the main paper. Most terms are introduced in the main

text.

The likelihood function for model Mj in equation (5) is (all three expressions are equivalent)

P (Y |β(j),Σ(j),Mj) = (2π)−
Tn
2 |Σ(j)|−

T
2 exp

{

−
1

2
(y − Z(j)β(j))′(Σ(j) ⊗ IT )

−1(y − Z(j)β(j))

}
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where

s(j) = y′(Σ(j) ⊗ IT )
−1y − β̂(j)′Z(j)′(Σ(j) ⊗ IT )

−1Z(j)β̂(j).

Please refer to Bauwens, Lubrano, and Richard (1999) for details. The prior p(β(j),Σ(j)|Mj) is

proportional to (both expressions are equivalent)
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The posterior is proportional to the product of the prior and the likelihood. We do not know

the analytical properties of the joint posterior p(β(j),Σ(j)|Mj , Y ), since its integrating constant

is unknown in general. Therefore, we derive expressions for the conditional posteriors.

The conditional posterior p(β(j)|Mj ,Σ
(j), Y ) is analytically known. Use the second expression

for the likelihood and the first expression for the prior to get

p(β(j)|Mj , Y,Σ
(j)) ∝ exp

{

−
1

2
(β(j) − β̂(j))′V (j)−1(β(j) − β̂(j))

}

exp

{

−
1

2
(β(j) −m(j))′

1

g
V (j)−1(β(j) −m(j))

}

. (26)
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Note the following:

C = (β(j) − β̂(j))′V (j)−1(β(j) − β̂(j)) + (β(j) −m(j))′
1

g
V (j)−1(β(j) −m(j))

C = β(j)′
(

1 + g

g
V (j)−1

)

β(j) − 2β(j)′
(

1 + g

g
V (j)−1

)(

1 + g

g
V (j)−1

)−1

(V (j)−1β̂(j)

+
1

g
V (j)−1m(j)) + β̂(j)′V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j)

C = β(j)′M∗(j)−1β(j) − 2β(j)′M∗(j)−1β∗(j) + β̂(j)′V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j)

C = (β(j)′ − β∗(j))′M∗(j)−1(β(j)′ − β∗(j)) + β̂(j)′V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j) − β∗(j)′M∗(j)−1β∗(j),

where M∗(j) is defined in equation (14) and β∗(j) is

β∗(j) =

(

1 + g

g
V (j)−1

)−1

(V (j)−1β̂(j) +
1

g
V (j)−1m(j))

β∗(j) =
g

1 + g
β̂ +

1

1 + g
m(j)

and hence equals equation (14). These results imply that

p(β(j)|Mj , Y,Σ
(j)) ∝ exp

{

−
1

2
(β(j) − β∗(j))′M∗(j)−1(β(j) − β∗(j))

}

.

and therefore

p(β(j)|Mj ,Σ
(j), Y ) = N(β∗(j),M∗(j)).

The conditional posterior p(Σ(j)|Mj , β
(j), Y ) is not analytically known. By combining the

last expression for the likelihood and the last expression for the prior we can easily show that it

is proportional to

p(Σ(j)|Mj , β
(j), Y ) ∝ |Σ(j)|−

T+n+1
2 |V (j)|−

1
2 exp

(

−
1

2
tr
(

Σ(j)−1[(Y −WBc)
′(Y −WBc)]

)

)

exp

(

−
1

2
tr

(

Σ(j)−1(B
(j)′

f −M
(j)′

f )′
1

g
X ′X(B

(j)′

f −M
(j)′

f )

))

and hence equals equation (14).

Finally, we need to obtain an expression for the conditional marginal likelihood p(Y |Mj ,Σ
(j)).

By combining the second expression for the likelihood and the first expression for the prior we
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get

p(Y |Mj ,Σ
(j)) =

∫

p(Y |Mj , β
(j),Σ(j))p(β(j)|Mj ,Σ

(j))dβ(j)

p(Y |Mj ,Σ
(j)) =

∫

(2π)−
Tn
2 |Σ(j)|−

T
2 exp

{

−
1

2
s(j)
}

exp

{

−
1

2
(β(j) − β̂(j))′Z(j)′(Σ(j) ⊗ IT )

−1Z(j)(β(j) − β̂(j))

}

(2π)−
k(j)

2 g−
k(j)

2 |V (j)|−
1
2 exp

{

−
1

2
(β(j) −m(j))′

1

g
V (j)−1(β(j) −m(j))

}

dβ(j)

p(Y |Mj ,Σ
(j)) = (2π)−

Tn+k(j)

2 |Σ(j)|−
T
2 g−

k(j)

2 |V (j)|−
1
2

exp

{

−
1

2

(

s(j) + β̂(j)′V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j) − β∗(j)′M∗(j)−1β∗(j)

)}

∫

exp

{

−
1

2
(β(j)′ − β∗(j))′M∗(j)−1(β(j)′ − β∗(j))

}

dβ(j)

p(Y |Mj ,Σ
(j)) = (2π)−

Tn+k(j)

2 |Σ(j)|−
T
2 g−

k(j)

2 |V (j)|−
1
2

exp

{

−
1

2

(

s(j) + β̂(j)′V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j) − β∗(j)′M∗(j)−1β∗(j)

)}

(2π)
k(j)

2 |M∗(j)|
1
2

p(Y |Mj ,Σ
(j)) = (2π)−

Tn
2 |Σ(j)|−

T
2 g−

k(j)

2 |V (j)|−
1
2 |M∗(j)|

1
2

exp

{

−
1

2

(

y′(Σ(j) ⊗ IT )
−1y +m(j)′ 1

g
V (j)−1m(j) − β∗(j)′M∗(j)−1β∗(j)

)}

p(Y |Mj ,Σ
(j)) = (2π)−

Tn
2 |Σ(j)|−

T
2 (1 + g)−

k(j)

2

exp

{

−
1

2

(

y′(Σ(j) ⊗ IT )
−1y +m(j)′ 1

g
V (j)−1m(j) − β∗(j)′M∗(j)−1β∗(j)

)}

,

where the third equality follows from the last expression for C. The final expression for

p(Y |Mj ,Σ
(j)) is equal to expression (16).

Secondly, we explain the MCMC algorithm we use to estimate the posterior distributions. In

every iteration we draw model Ml, coefficient vector β(l) and covariance matrix Σ(l). Current

values are indexed by j. The discussion in this section is partially based on Godsill (2001) and

Troughton and Godsill (1997) who explain how to apply model selection to univariate time-

series. Godsill (2001), Troughton and Godsill (1997) and Han and Carlin (2001) show that

the method works well when the common parameter (in our case Σ(j)) has a common meaning

across models. We generalize their method to model uncertainty over systems of equations, i.e.

restricted VAR(1) models.

In the first step, we choose to draw a new model Ml and a new coefficient vector β(l). As

in Godsill (2001), we draw Σ(l) in a second step and therefore condition on Σ(j) in the first

step. Since the dimension of the parameter space of the new model is not necessarily equal to

34



the dimension of the parameter space of the current model, we cannot use standard Metropolis-

Hastings techniques. We have to rely on the generalization in Green (1995) that allows moves

between parameter spaces of different dimensions.

Let the probability of proposing model M∗
l when we are currently in model Mj be q(Mj →

M∗
l ) and let q(β(l)|M∗

l , β
(j),Σ(j)) be the proposal density for coefficient vector β(l) when we are

in model M∗
l . Results in Green (1995) imply that the acceptance probability is

α = min

{

1,
p(M∗

l , β
(l)|Y,Σ(j))q(M∗

l → Mj)q(β
(j)|Y,Mj , β

(l),Σ(j))

p(Mj , β(j)|Σ(j))q(Mj → M∗
l )q(β

(l)|M∗
l , β

(j),Σ(j))

}

We propose a new modelM∗
l by randomly selecting a model with k(j)+1 and k(j)−1 variables

and propose β(l) using the conditional posterior distribution in equation (13): p(β(l)|M∗
l ,Σ

(j), Y ).

The acceptance probability simplifies to

α = min

{

1,
p(M∗

l , β
(l)|Y,Σ(j))p(β(j)|Y,Mj ,Σ

(j))

p(Mj, β(j)|Y,Σ(j))p(β(l)|Y,M∗
l ,Σ

(j))

}

Obviously, the following holds

p(M∗
l , β

(l)|Y,Σ(j)) = p(M∗
l |Y,Σ

(j))p(β(l)|Y,M∗
l ,Σ

(j))

and therefore we can simplify the acceptance probability to

α = min

{

1,
p(M∗

l |Y,Σ
(j))

p(Mj |Y,Σ(j))

}

.

Finally, since

p(M∗
l |Y,Σ

(j)) =
p(M∗

l )p(Y |M∗
l ,Σ

(j))

p(Y |Σ(j))

the acceptance probability becomes

α = min

{

1,
p(M∗

l )p(Y |M∗
l ,Σ

(j))

p(Mj)p(Y |Mj ,Σ(j))

}

,

which is equivalent to the expression in equation (17).

Note that the acceptance probability does not depend on the value of β(l). Therefore, in

practice we only draw β(l) when model M∗
l is accepted. In case model M∗

l is rejected and there-

fore Ml = Mj, we simply update β(l) using the conditional posterior distribution in equation

(13): p(β(l)|Ml = Mj ,Σ
(j), Y ).

Finally, we consider the updating step for Σ(l). We use a standard Metropolis-Hastings algo-

rithm. Suppose we draw Σ(l)∗ according to proposal density q(Σ(l)∗|Y,Ml) and let h(Σ(l)∗|Y,Ml)
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be the kernel of the target density. The acceptance probability is

α = min

{

1,
h(Σ(l)∗|Y,Ml)q(Σ

(j)|Y,Ml)

h(Σ(j)|Y,Ml)q(Σ(l)∗|Y,Ml)

}

.

The kernel of the target distribution is given in equation (14). As a proposal density, we choose

an iWishart
(

E(l)′E(l) + 1
g
H(l), T + n+ 1

)

.19 The acceptance probability becomes

α = min

{

1,
|Z(l)′(Σ(l)∗ ⊗ IT )

−1Z(l)|
1
2 |Σ(l)∗|

n+1
2

|Z(l)′(Σ(j) ⊗ IT )−1Z(l)|
1
2 |Σ(j)|

n+1
2

}

,

which is equivalent to the expression in equation (18).

In the empirical section, most results are based on 500,000 retained draws after an initialization

phase of 100,000 draws. Increasing the burn-in phase or the number of simulations does not

significantly change results. Visual inspection of the posterior draws suggests that the estimates

converge.

19We use the parameterization of Bauwens, Lubrano, and Richard (1999) for the inverted Wishart distribution.
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Figure 1: Posterior distribution of the coefficient on the credit spread in the equation

for excess stock returns
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This figure shows the posterior distribution of the coefficient on the credit spread in the equation for excess stock

returns, i.e. (xs, Crspr). It is based on 500,000 retained draws from the posterior distribution of the weighted BMA

model.
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Figure 2: Posterior distribution of the correlation between a shock to current excess

stock returns and a shock to future expected excess stock return.
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This figure shows the posterior distribution of the correlation between a shock in current excess stock

returns and a shock in the expectation of future excess stock returns. The correlation is a measure for the

mean reversion in stock returns. It is based on 500,000 retained draws from the posterior distribution of

the weighted BMA model.
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Figure 3: Term structure of risk for the excess log stock return using the BMA

model. Predictor variables are equal to their historical average.
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Term structure of predictive volatility for excess stock returns

 

 

Total volatility

Square root of the mean of the conditional variance

Volatility of the conditional mean

This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the weighted BMA model. The predictor variables are equal to

the sample means. Note that the total variance is equal to the mean of the conditional variance plus the

variance of the conditional mean and note that all values are annualized.
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Figure 4: Term structure of risk for the excess log stock return using the BMA

model. Predictor variables are equal to the values at the end of the sample.
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Term structure of predictive volatility for excess stock returns
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the weighted BMA model. The predictor variables are equal to

values in the fourth quarter of 2008. Note that the total variance is equal to the mean of the conditional

variance plus the variance of the conditional mean and note that all values are annualized.
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Figure 5: Time-series of annualized total volatility at different horizons.
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This figure shows a time-series of the square root of the annualized total variance of excess log stock returns

for three different investment horizons. It is based on 50,000 retained draws from the posterior distribution

of the weighted BMA model.
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Figure 6: Term structure of risk for the excess log stock return using the highest

posterior probability model. Predictor variables are equal to their historical aver-

age.
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Term structure of predictive volatility for excess stock returns

 

 

Total volatility

Square root of the mean of the conditional variance
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the SUR model that receives the highest posterior probability. The

predictor variables are equal to the sample means. Note that the total variance is equal to the mean of the

conditional variance plus the variance of the conditional mean and note that all values are annualized.
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Figure 7: Term structure of risk for the excess log stock return using the highest

posterior probability model. Predictor variables are equal to the values at the end

of the sample.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the SUR model that receives the highest posterior probability. The

predictor variables are equal to values in the fourth quarter of 2008. Note that the total variance is equal

to the mean of the conditional variance plus the variance of the conditional mean and note that all values

are annualized.
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Figure 8: Term structure of risk for the excess log stock return using the full model.

Predictor variables are equal to the values at their historical average.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the full model. The predictor variables are equal to their historical

average. Note that the total variance is equal to the mean of the conditional variance plus the variance of

the conditional mean and note that all values are annualized.
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Figure 9: Term structure of risk for the excess log stock return using the full model.

Predictor variables are equal to the values at the end of the sample.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained draws from

the posterior distribution of the weighted BMA model. The predictor variables are equal to values in the fourth

quarter of 2008. Note that the total variance is equal to the mean of the conditional variance plus the variance of

the conditional mean and note that all values are annualized.
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Figure 10: Higher moments stock returns. Predictor variables are equal to their

historical average.
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This figure plots the first four moments (mean, standard deviation, skewness and kurtosis) of the predictive

distribution of excess log stock returns using either the highest posterior probability (HPD) model without

parameter uncertainty (plug-in), the HPD with parameter uncertainty (param unc - HPD) or the BMA

model with parameter and model uncertainty (BMA). Results are based on 100,000 draws from the predictive

distribution. Predictor variables are set equal to their sample means. Note that the values in the graphs are

not annualized.
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Figure 11: Higher moments of stock returns. Predictor variables are equal to the

values at the end of the sample.
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This figure plots the first four moments (mean, standard deviation, skewness and kurtosis) of the predictive

distribution of excess log stock returns using either the highest posterior probability (HPD) model without

parameter uncertainty (plug-in), the HPD with parameter uncertainty (param unc - HPD) and the BMA

model with parameter and model uncertainty (BMA). Results are based on 100,000 draws from the predictive

distribution. Predictor variables are equal to their end-of-sample values. Note that the values in the graphs

are not annualized.
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Figure 12: Time-series of four moments of predictive distribution.
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This figure shows a time-series of the four moments of the predictive distribution for three different investment

horizons. It is based on 50,000 retained draws from the posterior distribution of the weighted BMA model.
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Figure 13: Portfolio weights versus horizon for different estimation techniques. Pre-

dictor variables are equal to their historical average.
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This figure plots T-bill weights (panel A), stock weights (panel B) and bond weights (panel C) against

different investment horizons for different estimation techniques. The weights are the optimal weights for a

buy-and-hold investor with risk aversion parameter γ = 5. Weights are either based on the highest posterior

probability model without parameter uncertainty (plug-in), on the HPD model incorporating parameter

uncertainty (param unc - HPD) and on the BMA specification that includes both parameter and model

uncertainty (BMA). Results are based on 100,000 draws from the predictive distribution. Predictor variables

are equal to their historical average values.
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Figure 14: Portfolio weights versus horizon for different estimation techniques. Pre-

dictor variables are equal to the values at the end of the sample.
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This figure plots T-bill weights (panel A), stock weights (panel B) and bond weights (panel C) against

different investment horizons for different estimation techniques. The weights are the optimal weights for a

buy-and-hold investor with risk aversion parameter γ = 5. Weights are either based on the highest posterior

probability model without parameter uncertainty (plug-in), on the HPD model incorporating parameter

uncertainty (param unc - HPD) and on the BMA specification that includes both parameter and model

uncertainty (BMA). Results are based on 100,000 draws from the predictive distribution. Predictor variables

are equal to the values in the fourth quarter of 2008.
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Figure 15: Plot of Certainty Equivalent versus horizon for different estimation tech-

niques. Predictor variables are equal to their historical average.
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This figure plots the certainty equivalence of different strategies versus the investment horizon. The cer-

tainty equivalents are calculated using a specification based on the HPD without parameter uncertainty, a

specification based on the HPD with parameter uncertainty and a specification based on the BMA model.

All strategies are evaluated using the BMA specification. Results are based on 100,000 retained draws from

the predictive distribution. Variables are set equal to their historical average.
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Figure 16: Plot of Certainty Equivalent versus horizon for different estimation tech-

niques. Predictor variables are equal to the values at the end of the sample.

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Horizon (in years)

C
e

rt
a

in
ty

 E
q

u
iv

a
le

n
t

Certainty Equivalent − End−of−sample

 

 

Plug−in − HPD

Param unc. − HPD

BMA

This figure plots the certainty equivalence of strategies versus the investment horizon. The certainty equiv-

alents are calculated using a specification based on the HPD without parameter uncertainty, a specification

based on the HPD with parameter uncertainty and a specification based on the BMA model. All strategies

are evaluated using the BMA specification. Results are based on 100,000 retained draws from the predictive

distribution. Variables are set equal to their end-of-sample values.
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Figure 17: Time-series of model probability (Xs,DP )
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This figure shows the time-series of the model probability (Xs, DP ). These are calculated by estimating the

BMA specification on an expanding window. The x-axis indicates the value of the last included observation

in the window. Results are based on 100,000 retained draws.
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Figure 18: Time-series of model probability (Xs, Crspr)
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This figure shows the time-series of the model probability (Xs, Crspr). These are calculated by estimating the

BMA specification on an expanding window. The x-axis indicates the value of the last included observation

in the window. Results are based on 100,000 retained draws.
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Figure 19: Time-series of posterior mean of coefficient (Xs,DP )
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This figure shows the time-series of the posterior mean of (Xs, DP ), its 5th percentile and its 95th percentile.

These are calculated by estimating the BMA specification on an expanding window. The x-axis indicates

the value of the last included observation in the window. Results are based on 100,000 retained draws.
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Figure 20: Time-series of posterior mean of coefficient (Xs, Crspr)
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This figure shows the time-series of the posterior mean of (Xs, Crspr), its 5th percentile and its 95th per-

centile. These are calculated by estimating the BMA specification on an expanding window. The x-axis

indicates the value of the last included observation in the window. Results are based on 100,000 retained

draws.
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Table 1: Summary Statistics of the quarterly data-set

This table reports the means, standard deviations, minima, maxima, AR(1)

coefficients and Sharpe ratios for the ex post T-bill rate (Rtbill), the excess

stock return (Xs), the excess bond return (Xb), the default risk premium

(Defpr), the dividend-to-price ratio (DP), the book-to-market ratio (BM),

the price-earnings ratio (PE), the smoothed nominal yield (Ynom), the

yield spread (Yspr), the credit spread (Crspr), net stock issues (ntis) and

the stock return variance (V ar). The data set is quarterly and starts in Q4

of 1926 and ends in Q4 of 2008. Percentages are given as fractions.

Mean Std Min Max AR(1) Sharpe

Rtbill 0.0018 0.0132 -0.0878 0.0449 0.5266
Xs 0.0132 0.1079 -0.4992 0.6399 -0.0408 0.1226
Xb 0.0045 0.0424 -0.1859 0.1854 -0.0555 0.1063
Defpr 0.0005 0.0180 -0.1217 0.0398 -0.0795
DP -3.3422 0.4674 -4.5054 -1.6747 0.9711
BM -0.6280 0.5089 -2.0778 0.7073 0.9769
PE 2.9140 0.3834 1.4214 3.9258 0.9601
Ynom -0.0002 0.0098 -0.0430 0.0443 0.5746
Yspr 0.0152 0.0122 -0.0308 0.0416 0.8484
Crspr 0.0107 0.0068 0.0032 0.0517 0.9175
ntis 0.0197 0.0247 -0.0530 0.1634 0.9196
V ar -5.3703 0.9834 -7.9027 -2.1677 0.7591
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Table 2: OLS Estimates and standard errors unrestricted model

This table reports the OLS estimates and standard errors of the coefficients in the unrestricted VAR(1)
model where the different equations are given in different rows. Panel A reports the OLS estimates and
standard deviations. Panel B reports the OLS estimates of the covariance matrix of the error term. The
elements on the diagonal are standard deviations x100, the off-diagonal elements are correlations. Note that
constants are suppressed in the table.

Panel A: OLS estimates and standard errors of slope coefficients

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.4360 -0.0105 -0.0219 -0.0556 0.0024 -0.0061 -0.0002 -0.1278 -0.1149 0.4131 0.0267 -0.0010
0.0535 0.0063 0.0188 0.0410 0.0043 0.0037 0.0075 0.0832 0.0693 0.1728 0.0291 0.0010

Xs 0.2323 -0.1085 0.3134 0.7852 -0.0315 -0.0884 -0.2228 -0.4919 -0.6622 -3.5008 -0.6495 -0.0080
0.5049 0.0597 0.1773 0.3871 0.0406 0.0353 0.0710 0.7859 0.6543 1.6315 0.2751 0.0090

Xb 0.2793 -0.0121 -0.1501 -0.2173 0.0052 -0.0210 -0.0278 0.3182 0.8938 -1.0045 -0.1987 0.0047
0.1971 0.0233 0.0692 0.1511 0.0159 0.0138 0.0277 0.3068 0.2554 0.6369 0.1074 0.0035

Defpr 0.0203 0.0114 0.0479 -0.0801 -0.0138 0.0015 -0.0207 -0.0998 -0.0606 -0.1700 0.1376 0.0013
0.0851 0.0101 0.0299 0.0652 0.0068 0.0059 0.0120 0.1324 0.1102 0.2748 0.0463 0.0015

DP -0.6584 0.0880 -0.2978 -0.8914 1.0360 0.0755 0.2029 0.4034 0.6222 1.9710 0.7770 0.0048
0.5188 0.0613 0.1822 0.3977 0.0418 0.0363 0.0729 0.8074 0.6722 1.6762 0.2826 0.0092

BM 0.0589 0.1230 -0.3403 -0.7438 0.0460 1.0366 0.1485 0.5279 0.9587 1.6938 0.8609 0.0052
0.5221 0.0617 0.1833 0.4002 0.0420 0.0365 0.0734 0.8126 0.6765 1.6869 0.2844 0.0093

PE 0.3363 -0.1048 0.3029 0.7858 -0.0583 -0.0875 0.7586 -0.5156 -0.7452 -2.6523 -0.5647 -0.0085
0.5027 0.0594 0.1765 0.3854 0.0405 0.0351 0.0707 0.7824 0.6513 1.6243 0.2739 0.0089

Ynom -0.0102 0.0026 -0.0068 0.0050 0.0017 0.0065 0.0113 0.6462 0.1828 0.1035 0.0290 -0.0010
0.0376 0.0044 0.0132 0.0288 0.0030 0.0026 0.0053 0.0585 0.0487 0.1215 0.0205 0.0007

Yspr -0.0144 -0.0006 0.0184 0.0037 -0.0023 -0.0044 -0.0084 0.0215 0.7842 0.0426 -0.0016 0.0006
0.0306 0.0036 0.0107 0.0234 0.0025 0.0021 0.0043 0.0476 0.0396 0.0987 0.0166 0.0005

Crspr 0.0092 0.0013 -0.0138 -0.0194 0.0003 -0.0005 -0.0012 -0.0198 -0.0011 0.7925 0.0045 0.0010
0.0135 0.0016 0.0048 0.0104 0.0011 0.0009 0.0019 0.0211 0.0175 0.0438 0.0074 0.0002

ntis -0.0961 0.0106 -0.0177 -0.0051 0.0025 -0.0029 0.0014 -0.1967 -0.1518 0.1491 0.9085 -0.0012
0.0449 0.0053 0.0158 0.0344 0.0036 0.0031 0.0063 0.0698 0.0581 0.1450 0.0244 0.0008

V ar -6.1149 0.4726 -2.5670 -5.4110 0.2098 -0.5217 0.0301 -3.8466 -4.4843 58.2268 0.4973 0.5195
2.9531 0.3490 1.0369 2.2638 0.2377 0.2064 0.4152 4.5963 3.8265 9.5420 1.6089 0.0526
Panel B: OLS estimates of covariance matrix of residuals

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.0901 -0.0537 0.2521 -0.0658 0.0288 -0.0180 -0.0505 -0.1265 0.0017 0.2609 -0.1156 -0.0318
Xs 10.2926 0.0626 0.2393 -0.9746 -0.8620 0.9949 0.0040 -0.0538 -0.5542 0.1460 -0.4292
Xb 4.0179 -0.3821 -0.0598 -0.0713 0.0643 -0.5539 0.0919 0.1569 0.0488 0.0788
Defpr 1.7339 -0.2520 -0.2034 0.2432 0.0537 0.1500 -0.1481 0.1673 -0.1693
DP 10.5747 0.8528 -0.9757 0.0030 0.0413 0.5291 -0.1241 0.4269
BM 10.6419 -0.8651 0.0106 0.0511 0.4657 -0.1112 0.3443
PE 10.2468 -0.0014 -0.0484 -0.5375 0.1409 -0.4372
Ynom 0.7662 -0.8454 -0.1325 -0.0593 -0.0325
Yspr 0.6228 0.0665 0.0686 -0.0013
Crspr 0.2760 -0.2346 0.2580
ntis 0.9145 0.1313
V ar 60.1963
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Table 3: Posterior probability of including a variable

This table reports the posterior probability of including a variable in the weighted Bayesian Model Averaging
model. The different equations are given in the different rows. Note that the right-hand-side variables are
lagged by one period. Results are based on 500,000 retained draws from the posterior distribution.

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.0000 0.3189 0.0580 0.1081 0.1292 0.2880 0.2262 0.0808 0.1199 0.4725 0.2264 0.0779
Xs 0.3320 0.0852 0.0695 0.0534 0.8406 0.0986 0.3831 0.0667 0.1741 0.8633 0.4850 0.0900
Xb 0.0679 0.0622 0.0915 0.1969 0.0670 0.0619 0.0619 0.5457 1.0000 0.0884 0.0816 0.1498
Defpr 0.0696 0.0854 0.1752 0.6810 0.1397 0.1802 0.2651 0.0761 0.0605 0.0936 0.7020 0.1954
DP 0.6725 0.1766 0.0795 0.2692 1.0000 0.1088 0.2329 0.0487 0.0587 0.6288 0.5781 0.1040
BM 0.0960 0.0702 0.0707 0.0621 0.1216 1.0000 0.1367 0.0572 0.0799 0.0776 0.4615 0.0777
PE 0.2568 0.0621 0.0590 0.0519 0.2752 0.0620 1.0000 0.0664 0.1529 0.4437 0.7225 0.1532
Ynom 0.0620 0.0521 0.0832 0.0976 0.0696 0.0698 0.0822 1.0000 0.8359 0.1894 0.1371 0.2267
Yspr 0.0717 0.0613 0.1143 0.0954 0.0590 0.0913 0.0776 0.0692 1.0000 0.4268 0.0982 0.2630
Crspr 0.0693 0.0521 0.1280 0.0595 0.1578 0.1505 0.3671 0.0937 0.0634 1.0000 0.0793 1.0000
ntis 0.1077 0.5003 0.1346 0.0702 0.0979 0.0926 0.1805 0.2396 0.2192 0.1096 1.0000 0.2251
V ar 0.1696 0.0562 0.0809 0.1125 0.1049 0.9850 0.2030 0.0696 0.1049 1.0000 0.0572 1.0000
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Table 4: Relevance of explanatory variables for predicting excess stock returns at

different horizons

This table reports the posterior probability of including a variable in the weighted Bayesian Model
Averaging model when the model is iterated forward by H periods. It shows which variables are important
for predicting excess stock returns at different horizons. Results are based on 500,000 retained draws from
the posterior distribution.

H Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

1 0.3320 0.0852 0.0695 0.0534 0.8406 0.0986 0.3831 0.0667 0.1741 0.8633 0.4850 0.0900
2 0.8287 0.5303 0.2946 0.3877 0.9967 0.4646 0.7203 0.3538 0.4897 0.9982 0.8150 0.9055
4 0.9226 0.8058 0.5809 0.6629 0.9990 0.9939 0.8984 0.6930 0.8775 0.9995 0.9814 0.9993
8 0.9261 0.8185 0.5997 0.6794 0.9995 0.9946 0.9056 0.7207 0.9045 0.9995 0.9861 0.9995

20 0.9261 0.8185 0.5997 0.6794 0.9995 0.9946 0.9056 0.7207 0.9045 0.9995 0.9861 0.9995
40 0.9261 0.8185 0.5997 0.6794 0.9995 0.9946 0.9056 0.7207 0.9045 0.9995 0.9861 0.9995
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Table 5: Posterior means and standard deviations

This table reports the posterior mean and standard deviation of the coefficients in the weighted Bayesian
Model Averaging model where the different equations are given in different rows. Panel A reports the
posterior mean and standard deviations of the slope coefficients. Panel B reports the posterior mean of the
elements of the covariance matrix of the error term. The elements on the diagonal are standard deviations
x100, the off-diagonal elements are correlations. Note that constants are suppressed in the table. Results
are based on 500,000 retained draws from the posterior distribution.

Panel A: Posterior means and standard deviations

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.4745 -0.0037 0.0001 -0.0047 0.0004 -0.0010 0.0013 -0.0060 -0.0094 0.1474 0.0104 0.0000
0.0538 0.0062 0.0038 0.0175 0.0019 0.0020 0.0034 0.0298 0.0340 0.1871 0.0229 0.0003

Xs -0.0393 -0.0005 0.0007 -0.0013 0.0234 -0.0005 -0.0163 -0.0026 0.0163 -0.9449 -0.1049 0.0000
0.0844 0.0030 0.0054 0.0132 0.0125 0.0034 0.0264 0.0225 0.0448 0.5820 0.2242 0.0005

Xb 0.0067 -0.0001 -0.0040 -0.0221 0.0000 0.0000 0.0000 0.3406 0.9993 0.0049 0.0002 0.0004
0.0353 0.0030 0.0204 0.0565 0.0010 0.0009 0.0013 0.3655 0.2677 0.1085 0.0248 0.0014

Defpr 0.0027 0.0007 0.0069 -0.0939 -0.0002 0.0006 -0.0018 -0.0066 0.0029 0.0087 0.0749 0.0003
0.0207 0.0036 0.0184 0.0768 0.0027 0.0016 0.0043 0.0388 0.0247 0.0662 0.0589 0.0008

DP -0.2152 -0.0037 0.0023 -0.0396 0.9812 -0.0009 0.0106 -0.0019 -0.0020 -0.6841 0.1890 -0.0003
0.1824 0.0097 0.0128 0.0764 0.0133 0.0043 0.0242 0.0338 0.0349 0.6388 0.2600 0.0011

BM 0.0265 0.0016 -0.0034 0.0064 0.0023 0.9708 -0.0042 -0.0036 0.0143 -0.0119 0.2100 -0.0002
0.1152 0.0097 0.0236 0.0503 0.0087 0.0149 0.0148 0.0806 0.0925 0.2474 0.2954 0.0014

PE 0.0165 0.0000 -0.0002 -0.0004 -0.0023 -0.0002 0.9659 0.0005 -0.0119 -0.1336 -0.0176 -0.0002
0.0750 0.0024 0.0045 0.0122 0.0115 0.0029 0.0252 0.0207 0.0390 0.5529 0.2269 0.0007

Ynom 0.0003 0.0000 -0.0005 -0.0003 0.0000 0.0000 0.0001 0.6644 0.1034 -0.0121 0.0012 -0.0002
0.0032 0.0004 0.0035 0.0039 0.0001 0.0005 0.0007 0.0404 0.0591 0.0462 0.0042 0.0005

Yspr 0.0003 0.0000 0.0008 -0.0007 0.0000 -0.0001 0.0000 0.0017 0.8510 0.0320 0.0004 0.0002
0.0032 0.0004 0.0038 0.0037 0.0001 0.0005 0.0007 0.0147 0.0417 0.0542 0.0028 0.0005

Crspr 0.0004 0.0000 -0.0006 0.0002 0.0001 -0.0001 -0.0005 -0.0014 0.0004 0.8090 -0.0003 0.0009
0.0032 0.0003 0.0018 0.0019 0.0003 0.0004 0.0009 0.0063 0.0033 0.0347 0.0021 0.0002

ntis -0.0050 0.0057 -0.0025 0.0019 0.0002 -0.0001 0.0007 -0.0287 -0.0214 -0.0104 0.9230 -0.0002
0.0197 0.0066 0.0081 0.0109 0.0014 0.0006 0.0022 0.0622 0.0487 0.0458 0.0223 0.0005

V ar -0.7063 0.0010 -0.0646 -0.2388 0.0160 -0.3910 -0.0844 0.1473 -0.3725 50.1991 -0.0229 0.5321
1.8988 0.0735 0.3188 0.8930 0.0743 0.1640 0.2257 1.0625 1.4352 8.0194 0.3682 0.0456
Panel B: Posterior mean of covariance matrix

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.1483 -0.0588 0.2525 -0.0743 0.0381 -0.0127 -0.0556 -0.1318 0.0114 0.2672 -0.0945 -0.0092
Xs 10.9314 0.0695 0.2406 -0.9752 -0.8669 0.9951 -0.0265 -0.0256 -0.5449 0.1320 -0.4340
Xb 4.2376 -0.3799 -0.0670 -0.0775 0.0715 -0.5603 0.1003 0.1725 0.0435 0.0883
Defpr 1.8222 -0.2538 -0.2039 0.2444 0.0458 0.1588 -0.1516 0.1540 -0.1776
DP 11.2089 0.8575 -0.9763 0.0316 0.0157 0.5215 -0.1101 0.4338
BM 11.2405 -0.8697 0.0403 0.0229 0.4642 -0.1038 0.3499
PE 10.8847 -0.0317 -0.0207 -0.5285 0.1275 -0.4415
Ynom 0.8111 -0.8468 -0.1296 -0.0510 -0.0312
Yspr 0.6562 0.0569 0.0612 -0.0059
Crspr 0.2882 -0.2190 0.2711
ntis 0.9637 0.1508
V ar 63.4195
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Table 6: Jointness measure of explanatory variables in equation for excess stock

returns

This table reports a jointness measure for pairs of variables in the equation for excess stock returns. The
jointness measure is based on Ley and Steel (2007) and ranges from 0 (decisive evidence in favour of
disjointness of the variables) to ∞ (decisive evidence in favour of jointness of the variables). Results are
based on 500,000 retained draws from the posterior distribution.

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill - 0.0881 0.0707 0.0510 0.4690 0.0914 0.2428 0.0711 0.1148 0.4321 0.3180 0.0619
Xs 0.0881 - 0.0470 0.0267 0.0959 0.0457 0.0776 0.0405 0.0671 0.0914 0.0909 0.0441
Xb 0.0707 0.0470 - 0.0355 0.0755 0.0407 0.0601 0.0220 0.0467 0.0773 0.0632 0.0441
Defpr 0.0510 0.0267 0.0355 - 0.0589 0.0503 0.0510 0.0294 0.0385 0.0564 0.0464 0.0521
DP 0.4690 0.0959 0.0755 0.0589 - 0.0905 0.2986 0.0702 0.2103 2.5790 0.8327 0.0917
BM 0.0914 0.0457 0.0407 0.0503 0.0905 - 0.1560 0.0483 0.0581 0.1102 0.1015 0.0553
PE 0.2428 0.0776 0.0601 0.0510 0.2986 0.1560 - 0.0726 0.1331 0.6960 0.3991 0.0866
Ynom 0.0711 0.0405 0.0220 0.0294 0.0702 0.0483 0.0726 - 0.0439 0.0700 0.0662 0.0319
Yspr 0.1148 0.0671 0.0467 0.0385 0.2103 0.0581 0.1331 0.0439 - 0.2158 0.1755 0.0736
Crspr 0.4321 0.0914 0.0773 0.0564 2.5790 0.1102 0.6960 0.0700 0.2158 - 0.7769 0.0985
ntis 0.3180 0.0909 0.0632 0.0464 0.8327 0.1015 0.3991 0.0662 0.1755 0.7769 - 0.0881
V ar 0.0619 0.0441 0.0441 0.0521 0.0917 0.0553 0.0866 0.0319 0.0736 0.0985 0.0881 -
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Table 7: Posterior means and standard deviations Best Model

This table reports the model that receives the highest posterior probability where the different equations
are denoted by different rows in the table. The table reports the posterior means and standard deviations.
A ”-” means that a variable is excluded in the highest posterior probability model. Results are based on
500,000 retained draws from the posterior distribution.

Panel A: Posterior means and standard deviations

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.5036 -0.0124 - - - - - - - - -
0.0452 0.0055

Xs - - - - 0.0272 - - - 0.0835 -0.7729 -0.5190 -
0.0037 0.0525 0.1267 0.1891

Xb - - - - - - - - 0.7994 0.2096 - -
0.1707 0.1707

Defpr - - - -0.1515 - - -0.0042 - - - 0.0834 -
0.0470 0.0022 0.0365

DP -0.4315 - - - 0.9751 - - - - - 0.6849 -0.0038
0.1044 0.0046 0.1972 0.0014

BM - - - - - 0.9812 - - - - 0.7078 -
0.0065 0.2091

PE 0.0937 - - - - - 0.9794 - - - -0.4347 -
0.0474 0.0047 0.1897

Ynom - - - - - -0.0001 - 0.6974 0.1259 - - -
0.0002 0.0127 0.0367

Yspr - - - - - - - - 0.8464 - - -
0.0293

Crspr - - - - 0.0008 - - - 0.0034 0.7931 - 0.0009
0.0003 0.0111 0.0299 0.0002

ntis - - - - - - - - - - 0.9212 -0.0012
0.0205 0.0005

V ar - - - - - -0.2931 - - - 49.7713 - 0.5350
0.0681 6.8995 0.0441

Panel B: Posterior mean of covariance matrix

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.1465 -0.0648 0.2373 -0.0727 0.0413 -0.0073 -0.0616 -0.1303 0.0210 0.2682 -0.0773 0.0017
Xs 10.8456 0.0590 0.2470 -0.9746 -0.8644 0.9951 -0.0192 -0.0275 -0.5427 0.1243 -0.4319
Xb 4.2459 -0.3886 -0.0512 -0.0637 0.0601 -0.5577 0.0967 0.1727 0.0342 0.0919
Defpr 1.8163 -0.2620 -0.2103 0.2509 0.0490 0.1593 -0.1552 0.1625 -0.1850
DP 11.0966 0.8545 -0.9757 0.0204 0.0190 0.5209 -0.1057 0.4325
BM 11.1029 -0.8672 0.0283 0.0281 0.4639 -0.0976 0.3497
PE 10.7938 -0.0234 -0.0234 -0.5266 0.1201 -0.4396
Ynom 0.8126 -0.8469 -0.1308 -0.0525 -0.0348
Yspr 0.6594 0.0589 0.0679 -0.0032
Crspr 0.2876 -0.2130 0.2704
ntis 0.9661 0.1561
V ar 63.4407
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Table 8: Robustness: posterior probability of including a variable using a different

prior distribution

This table reports the posterior probability of including a variable in the weighted Bayesian Model Averaging
model. We use a beta-prior for parameter q and an inverse gamma prior for parameter g. The different
equations are given in the different rows. Note that the right-hand-side variables are lagged by one period.
Results are based on 500,000 retained draws from the posterior distribution.

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.0000 0.1826 0.0255 0.0434 0.0429 0.1124 0.0794 0.0410 0.0421 0.1552 0.0836 0.0359
Xs 0.2332 0.0385 0.0271 0.0273 0.9650 0.0410 0.1524 0.0348 0.1028 0.7348 0.2405 0.0454
Xb 0.0520 0.0236 0.0344 0.1101 0.0275 0.0230 0.0243 0.3555 0.9983 0.0438 0.0282 0.0653
Defpr 0.0257 0.0339 0.0980 0.4661 0.0630 0.0822 0.1331 0.0281 0.0277 0.0522 0.5011 0.0998
DP 0.4593 0.1002 0.0349 0.1322 1.0000 0.0430 0.0654 0.0198 0.0213 0.8010 0.3096 0.0420
BM 0.0375 0.0347 0.0284 0.0268 0.0592 1.0000 0.0530 0.0211 0.0239 0.0337 0.2106 0.0305
PE 0.1204 0.0190 0.0235 0.0310 0.1156 0.0299 1.0000 0.0277 0.0818 0.3829 0.8025 0.0733
Ynom 0.0253 0.0227 0.0239 0.0519 0.0270 0.0303 0.0243 1.0000 0.7649 0.0858 0.0472 0.0771
Yspr 0.0232 0.0239 0.0336 0.0480 0.0265 0.0309 0.0302 0.0361 1.0000 0.2199 0.0355 0.1094
Crspr 0.0271 0.0257 0.0544 0.0305 0.1028 0.0743 0.2813 0.0427 0.0343 1.0000 0.0339 0.9992
ntis 0.0379 0.3455 0.0606 0.0400 0.0454 0.0414 0.1052 0.0822 0.0798 0.0705 1.0000 0.1539
V ar 0.0761 0.0340 0.0320 0.0504 0.0487 0.9789 0.0934 0.0270 0.0398 1.0000 0.0266 1.0000
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Table 9: Robustness: posterior means and standard deviations using a different prior

distribution

This table reports the posterior mean and standard deviation of the coefficients in the weighted Bayesian
Model Averaging model where the different equations are given in different rows. We use a beta-prior for q
and a inverse gamma prior for g. Panel A reports the posterior mean and standard deviations of the slope
coefficients. Panel B reports the posterior mean of the elements of the covariance matrix of the error term.
The elements on the diagonal are standard deviations x100, the off-diagonal elements are correlations. Note
that constants are suppressed in the table. Results are based on 500,000 retained draws from the posterior
distribution.

Panel A: Posterior means and standard deviations

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.4865 -0.0021 0.0000 -0.0017 0.0001 -0.0003 0.0003 -0.0029 -0.0021 0.0407 0.0036 0.0000
0.0496 0.0051 0.0025 0.0107 0.0010 0.0012 0.0018 0.0199 0.0161 0.1112 0.0139 0.0002

Xs -0.0289 -0.0002 0.0002 -0.0005 0.0265 -0.0002 -0.0047 -0.0013 0.0099 -0.6633 -0.0336 0.0000
0.0638 0.0018 0.0029 0.0086 0.0081 0.0014 0.0141 0.0153 0.0352 0.4973 0.1300 0.0003

Xb 0.0052 -0.0001 -0.0010 -0.0123 0.0000 0.0000 0.0000 0.2242 0.9490 0.0072 0.0005 0.0001
0.0298 0.0017 0.0103 0.0421 0.0005 0.0005 0.0007 0.3375 0.2717 0.0669 0.0117 0.0007

Defpr 0.0009 0.0002 0.0039 -0.0625 0.0001 0.0002 -0.0007 -0.0024 0.0015 0.0063 0.0513 0.0002
0.0123 0.0019 0.0140 0.0749 0.0012 0.0010 0.0023 0.0234 0.0172 0.0475 0.0577 0.0006

DP -0.1422 -0.0022 0.0010 -0.0193 0.9802 -0.0003 0.0023 -0.0005 -0.0007 -0.9725 0.0779 -0.0001
0.1743 0.0078 0.0081 0.0567 0.0091 0.0022 0.0118 0.0206 0.0213 0.6287 0.1671 0.0007

BM 0.0089 0.0007 -0.0014 0.0031 0.0013 0.9763 -0.0016 -0.0015 0.0041 -0.0102 0.0789 -0.0001
0.0656 0.0066 0.0149 0.0337 0.0065 0.0117 0.0090 0.0478 0.0498 0.1481 0.1905 0.0008

PE 0.0077 0.0000 -0.0001 -0.0001 0.0005 0.0000 0.9768 0.0006 -0.0067 0.1164 0.0573 -0.0001
0.0448 0.0012 0.0025 0.0083 0.0072 0.0011 0.0142 0.0126 0.0292 0.4709 0.1351 0.0004

Ynom 0.0001 0.0000 -0.0001 -0.0002 0.0000 0.0000 0.0000 0.6794 0.0932 -0.0023 0.0003 -0.0001
0.0018 0.0002 0.0013 0.0025 0.0001 0.0001 0.0001 0.0370 0.0618 0.0249 0.0019 0.0003

Yspr 0.0001 0.0000 0.0002 -0.0003 0.0000 0.0000 0.0000 0.0011 0.8657 0.0123 0.0001 0.0001
0.0017 0.0002 0.0016 0.0023 0.0001 0.0001 0.0001 0.0110 0.0422 0.0321 0.0013 0.0003

Crspr 0.0001 0.0000 -0.0002 0.0001 0.0001 0.0000 -0.0004 -0.0007 0.0002 0.8169 -0.0001 0.0008
0.0019 0.0002 0.0012 0.0014 0.0002 0.0003 0.0007 0.0043 0.0025 0.0353 0.0013 0.0002

ntis -0.0015 0.0040 -0.0010 0.0013 0.0000 0.0000 0.0003 -0.0086 -0.0065 -0.0083 0.9235 -0.0002
0.0108 0.0062 0.0052 0.0088 0.0008 0.0004 0.0014 0.0350 0.0269 0.0391 0.0204 0.0005

V ar -0.3037 -0.0003 -0.0231 -0.1077 0.0058 -0.3310 -0.0319 0.0619 -0.1239 49.8479 -0.0133 0.5443
1.2676 0.0571 0.1879 0.6065 0.0492 0.1270 0.1538 0.6543 0.8219 7.4173 0.2447 0.0461
Panel B: Posterior mean of covariance matrix

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.1532 -0.0644 0.2508 -0.0719 0.0448 -0.0077 -0.0612 -0.1366 0.0216 0.2658 -0.0941 -0.0056
Xs 10.9552 0.0694 0.2344 -0.9751 -0.8670 0.9951 -0.0264 -0.0264 -0.5422 0.1286 -0.4319
Xb 4.2419 -0.3801 -0.0678 -0.0779 0.0715 -0.5615 0.1032 0.1741 0.0378 0.0894
Defpr 1.8280 -0.2463 -0.1965 0.2380 0.0447 0.1616 -0.1474 0.1493 -0.1768
DP 11.2450 0.8577 -0.9763 0.0322 0.0163 0.5184 -0.1067 0.4327
BM 11.2647 -0.8699 0.0414 0.0224 0.4631 -0.1014 0.3486
PE 10.9089 -0.0317 -0.0214 -0.5258 0.1243 -0.4395
Ynom 0.8143 -0.8477 -0.1317 -0.0454 -0.0331
Yspr 0.6593 0.0590 0.0573 -0.0043
Crspr 0.2882 -0.2186 0.2710
ntis 0.9661 0.1541
V ar 63.4438
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