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Abstract

We put forward a Merton-type multi-factor portfolio model for assessing banks’ contributions
to systemic risk. This model accounts for the major drivers of banks’ systemic relevance: size,
default risk and correlation of banks’ assets as a proxy for interconnectedness. We measure
systemic risk in terms of the portfolio expected shortfall (ES). Banks’ (marginal) risk con-
tributions are calculated based on partial derivatives of the ES in order to ensure a full risk
allocation among institutions. We compare the performance of an importance sampling al-
gorithm with a fast analytical approximation of the ES and the marginal risk contributions.
Furthermore, we show empirically for a portfolio of large international banks how our ap-
proach could be implemented to compute bank-specific capital surcharges for systemic risk or
stabilisation fees. We find that size alone is not a reliable proxy for the systemic importance
of a bank in this framework. In order to smooth cyclical fluctuations of the risk measure, we
explore a time-varying confidence level of the ES.

Keywords: systemic risk contribution, systemic capital charge, expected shortfall,
importance sampling, granularity adjustment
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1. Introduction

The failure of certain financial institutions such as Lehman, Northern Rock or HRE during
the crisis of 2007-2009 highlighted the significant adverse impact that a failure of a single firm
can have on the financial system as a whole. Therefore, a firm-specific or microprudential
approach is not sufficient to promote financial stability. Instead a careful assessment of a
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financial firm’s contribution to the system-wide risk should be an important part of macro-
prudential financial supervision.

The risk that refers to a financial system as a whole is often addressed as systemic risk.
We define this term in the following as the risk of a collapse of a financial system that entails
a social welfare loss. The task of addressing a systemic event and its negative externalities
requires approaches for measuring system-wide risk and decomposing it into the contribu-
tions of individual institutions. A macro-prudential approach would rely on measures of the
magnitude of the potential loss or cost associated with the systemic event and on procedures
for building up a sufficient capital basis in the financial system to bear (most of) this cost.
As an important auxiliary condition, macro-prudential measures should contribute to reduce
potential procyclical effects of regulation.

In this paper we focus on the subject of measuring and allocating systemic risk. For
this purpose we propose a widely used credit risk model that treats the financial system of
banks similar to a portfolio of securities and takes into account interlinkages between banks
through their asset correlations. Furthermore, the multi-factor correlation structure allows
for a differentiated treatment of individual or certain groups of institutions. This reflects the
fact that episodes of financial distress often arise from the exposure of groups of institutions
to common risk factors.

In the portfolio context, a systemic event corresponds with the realisation of extreme
portfolio losses. The maximum systemic risk tolerated is defined as the expected shortfall
(ES) at a confidence level q, i.e., the expected loss in the worst 100(1 − q)% of cases. The
value of the confidence level q is set by the regulator depending on his risk tolerance. A
macro-prudential tool based on the ES may generate procyclical effects because of cyclical
risk components such as point-in-time default probabilities. Therefore, we consider also a
time-variant confidence level q(t) as a possible mitigant of procyclicality.

In order to break down extreme portfolio losses into the contributions of individual banks
we draw on a rich literature on coherent, additive risk contributions for credit portfolios.
Employing marginal risk contributions based on the partial derivatives of the portfolio ES
with respect to the institutions’ relative portfolio weight allows for a complete allocation of
the system-wide risk to the individual banks.

On the basis of the estimated system-wide tail risk and its decomposition into the indi-
vidual institutions’ contributions, a set of rule-based policy interventions, such as systemic
capital charge or a stabilisation fee, can be designed.

In summary, we see the following four aspects as the main contribution of this paper:

1. We provide a full allocation of the systemic risk across institutions based on the Euler
allocation principle thereby adopting a methodology that is well-researched in the risk
management literature for the assessment of banks’ systemic importance.

2. We derive an analytical approximation of the marginal risk contributions and compare
its performance with a simulation-based importance sampling technique.

3. We use equity market information in order to gauge the market participants’ collective
evaluation of the otherwise difficult to quantify interlinkages that drive systemic risk.

4. We propose and empirically explore a time-varying confidence level of the ES as a
method to mitigate procyclical effects of capital charges for systemic risk.
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The remainder of the paper is organised as follows. Section 2 provides a brief review of
selected literature. Section 3 presents the credit portfolio model on which the tail risk contri-
butions are based. Sections 4 and 5 present the estimation of the system-wide tail risk as well
as tail risk contributions by means of an IS simulation and an analytical solution respectively.
Section 6 reports the results of an empirical study carried out for a sample of large inter-
national banks. In section 7 the risk drivers of the systemic risk and the banks’ respective
systemic importance are analysed, namely the probability of default, the asset correlations,
and the relative size of a bank in the financial system. Possible policy implications of the
proposed methodology are presented in section 8. In this section we distinguish between
two dimensions: a cross-sectional dimension including a proposal for an ES-based capital
surcharge for systemic risk and a time series dimension in which we smooth the cyclicality of
the risk measure by a time-variant confidence level. Section 9 summarises and concludes.

2. Related literature

Many methods for assessing systemic risk and risk contributions have been discussed in
the related literature. The IMF’s Global Financial Stability Report (IMF, 2009, pp 73-
149) reviews the most recent approaches for detecting the tail risk of a financial system
by examining direct and indirect financial sector interlinkages. Market prices of financial
instruments and credit risk modelling have already been used in the literature in order to
measure systemic risk.

De Nicolo and Kwast (2002) argue that the information contained in banks’ equity returns
can be used to measure the total (direct and indirect) dependence since stock prices reflect
market participants’ collective evaluation of the future prospects of the firm, including the
total impact of its interactions with other institutions. In our paper we incorporate the banks’
equity return correlation in order to judge the correlation between the institutions’ defaults.

Equity returns and other market data are widely used to measure the fragility of financial
institutions at individual and aggregate levels. For example, Bartram et al. (2007) estimate
the default probabilities for a large sample of international banks from time series of equity
prices and also from equity option prices, based on the assumptions of Merton’s structural
model (Merton, 1974). They use this information to construct indicators for a systemic event.
In our paper we use the estimates of banks’ default probabilities obtained from Moody’s KMV,
whose model is also based on the Merton’s fundamental idea.

Huang et al. (2009) deduce risk neutral default probabilities for major banks from their
CDS spreads and asset return correlation from the co-movement of equity returns. Using
these key parameters as input in a portfolio credit risk model, the authors suggest computing
an indicator of systemic risk, namely the price of insurance against large default losses in
the banking sector. The theoretical insurance premium equals the risk-neutral expectation of
portfolio credit losses given that the losses exceed some minimum share of the sector’s total
liabilities.

Another application of the credit portfolio approach based on market data can be found
in Segoviano and Goodhart (2009). The authors utilise the ”nonparametric consistent infor-
mation multivariate density optimising methodology” in order to obtain the joint multivariate
density of the banks’ asset value movements. Based on this information, several indicators of
banking stability can be constructed: (i) the joint probability of distress of all banks in the
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portfolio; (ii) a banking stability index that reflects the expected number of banks becoming
distressed given at least one bank has become distressed; (iii) the conditional probabilities of
distress for individual banks or specific groups of banks.

Also by virtue of the joint probability distribution of banks’ assets, Lehar (2005) specifies
the following indicators of systemic risk: (i) an asset-value-related systemic risk index by
computing the probability that a group of banks with a total amount of assets greater than
a certain fraction of all banks’ assets goes bankrupt within a short period of time; (ii) a
number-of-defaults-related systemic risk index by computing the probability that a certain
number of banks go bankrupt within a short period of time; (iii) the value of a hypothetical
deposit insurance, its volatility as well as the individual volatility contributions.

While most of the methods described above focus on the monitoring of systemic risk,
Adrian and Brunnermeier (2009) suggest an approach for measuring the contributions that
individual banks make to systemic risk. For this purpose the authors make use of the quantile
regression technique and the CoVaR measure. The authors suggest predicting individual
risk contributions on the basis of certain firm-specific characteristics like size, leverage and
maturity mismatch. A shortcoming of the CoVaR approach is that the sum of individual risk
contributions does not equal the system-wide risk.

Tarashev et al. (2010) use a game theoretic concept and allocate systemic risk contribu-
tions to banks based on the Shapley value concept. Their methodology can in principle be
applied either with VaR or ES as the relevant risk measure of the financial system. Banks’
individual probabilities of default, (a fixed fraction of) the book value of liabilities and the
chosen asset correlation coefficient entirely determine the probability distribution of portfolio
losses and allow for the estimation of the portfolio tail risk. The risk at the portfolio level
is then attributed to the individual institutions by means of the Shapley value methodology.
Thereby, for each specific institution, its contribution to the risk of all possible subportfolios
in which this institution is present have to be computed. The average value of all those con-
tributions is than the institution’s contribution to the systemic risk, or its Shapley value. The
authors suggest to use the Shapley value as a measure of an institution’s systemic importance
on whose basis macro-prudential policy interventions may be conducted. Unfortunately, due
to the rapidly increasing computational complexity, the Shapley value methodology can only
be applied to very small portfolios or portfolios consisting of few homogeneous subportfolios.
The approach put forward in this paper instead remains feasible for large and heterogenous
portfolios (or financial systems). Furthermore, compared to the one-factor asset return de-
compositon adopted by Tarashev et al. (2010) the utilisation of a multi-factor model allows
for a more risk-sensitive modelling of systemic risk.

Another proposal how to measure financial institutions’ contribution to systemic risk is put
forward by Acharya et al. (2010). Their marginal expected shortfall measure is conceptually
related to our approach but defined differently: In order to facilitate its computation they
define this measure by the worst 5% net equity returns at daily frequency. In this paper we
use the marginal expected shortfall in the sense of the Euler allocation principle, based on the
portfolio risk characteristics at a certain point in time, instead of a time-series estimate based
on past equity returns. Acharya et al. (2010) also embed their risk measure into an economic
model to determine an optimal taxation policy for systemic risk which is an extension not
addressed in our paper.

Since the focus of this paper is on the application of the credit portfolio methodology
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using market and balance sheet data, we refer to the IMF’s GFSR (IMF, 2009) as well as
the references therein for more research on network analysis and domino effects. Moreover,
De Bandt and Hartmann (2000) provide a comprehensive survey on the theoretical and em-
pirical literature on contagion in banking and financial markets as well as in payment and
settlement systems. See also Nier et al. (2007) for further useful references. An example of
an integrated systemic risk framework which combines standard techniques from market and
credit risk management with a network model of a banking system is the OeNB’s Systemic
Risk Monitor, see Boss et al. (2006).

3. Model set-up

We think of a financial system as a portfolio of n assets, the assets being financial institu-
tions. The portfolio’s loss distribution describes the risk of the entire financial system. Losses
can only be induced by a distress of one or more institutions included in the portfolio. For
the i−th institution, the exposure at distress, EADi, is defined as the book value of the insti-
tution’s liabilities that are defined in this paper in nominal terms and after deducting capital.
Then wi = EADi/

∑n
i=1 EADi denotes the relative portfolio weight of the ith institution.

The loss given distress, LGDi, represents a fraction of the total liabilities which specifies the
potential costs of the resolution or a bail-out of the distressed financial institution. An event
of distress occurs at a predefined time horizon with the unconditional distress probability pi.
The event of distress is captured by the Bernoulli random variable Di ∼ Be(pi). In the spirit
of the structural credit risk framework, we define distress as an event when the asset return of
a financial institution hits or falls below its default threshold at a pre-specified time horizon.
The default threshold specifies the point where the institution has to either enter resolution
or be bailed out.

To complete the asset value model, we further assume that the standardised asset returns
{Xi}i=1,...,n are multivariate normally distributed with a full-rank correlation matrix. To
explain where the linear dependence results from, we decompose {Xi} into a systematic and
an idiosyncratic component by means of a multi-factor model. Following Pykhtin (2004) we
assume that the asset return of a financial institution i depends on a composite systematic risk
factor Yi which is a convex combination of a set of independent standard normally distributed
systematic risk factors {Zk}k=1,...,m with m � n. The idiosyncratic part of the asset return
variation is captured by an independent standard normally distributed shock εi.

The model framework for the risk drivers {Xi}i=1,...,n, the distress indicators {Di}i=1,...,n

and our target variable – the portfolio loss rate PL – can now be formally summarised as
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follows:

Xi = aiYi +
√

1− a2
i εi, ai ∈ (0, 1) (3.1)

Yi =
m∑
k=1

αikZk,
m∑
k=1

α2
ik = 1 (3.2)

Zk, εi
iid∼ N(0, 1) for all k = 1, . . . ,m and i = 1, . . . , n

Di = 1⇔ Xi ∈
(
−∞,Φ−1(pi)

]
(3.3)

PL =
n∑
i=1

wi · LGDi ·Di. (3.4)

In the expressions above, the factor loading ai specifies the sensitivity of the particular
institution to the systematic risk factor, and the asset correlation between distinct institutions
i and j is given by ρi,j = aiajρYi,Yj , where ρYi,Yj =

∑m
k=1 αikαjk denotes the correlation between

the two composite factors.
As already mentioned in section 1, we are primarily interested in the ES at a confidence

level q as a coherent measure of the portfolio tail risk. But for the sake of completeness, we
also report the results on VaR which defines the threshold for the ES measure. Let us denote
the (discrete) cumulative distribution function of the portfolio loss rate by FPL(·) and its
quantile function by F−1

PL(·). Then, VaR and ES can be defined as follows:

V aRq(PL) = F−1
PL(q) = inf

{
x ∈ [0, 1] : FPL(x) > q

}
(3.5)

ESq(PL) =
1

1− q

∫ 1

q

V aRt(PL)d t. (3.6)

As an alternative to (3.6), Kalkbrener (2005, p 434) considers an expression which turns
out to be more instructive especially for simulation purposes later in this paper. As shown
in Acerbi and Tasche (2002), if the distribution of portfolio loss were continuous, (3.6) would
coincide with the tail conditional expectation (TCE) defined as

TCEq(PL) = E
[
PL | PL > V aRq(PL)

]
. (3.7)

For a discrete loss distribution, however, the expression above has to be augmented with a
correction term which adjusts the TCE measure upwards if the probability of the portfolio
losses at the point V aRq(PL) does not coincide with q:

ESq(PL) = E
[
PL | PL > V aRq(PL)

]
+

1

1− q
V aRq(PL)

[
FPL

(
V aRq(PL)

)
− q
]
. (3.8)

After computing the overall tail risk, we turn to the calculation of individual risk contri-
butions which satisfy the full allocation property, i.e., their sum equals the total system-wide
risk. For this purpose we use the Euler allocation or the marginal risk contributions based
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on the derivatives of the tail risk measure with respect to the portfolio weights of individual
positions.

The marginal contributions measure the impact of a small change in the portfolio weight
of a bank on the total tail risk of the whole portfolio. The Euler allocation principle has
proved useful in portfolio-oriented risk management, particulary for the purpose of economic
capital allocation, performance measurement, portfolio optimisation or risk-sensitive pricing.
According to Denault (2001) the Euler allocation can also be motivated by game theory as
the partial derivatives correspond to the Aumann-Shapley value that lies in the core of a
coalitional game. For more information on the concept of Euler contributions as well as
related literature and economic motivation see Tasche (2008). For an axiomatic approach to
coherent risk measures and capital allocation see also Kalkbrener (2005).

In the following two sections we consider two methods to compute the portfolio risk and
banks’ risk contributions: firstly by simulation and afterwards by an analytical approximation.

4. Measuring and allocating systemic risk by simulation

Although it appears straightforward to compute an estimate of the portfolio tail risk by
simulation, the brute-force Monte Carlo (MC) technique may fail for such rare events as
PL > V aRq(PL). To clarify this point, let us consider the issue of estimating the small
probability 1 − q of a rare event which is, concerning simulation efficiency, equivalent to
estimating V aRq. That probability can be represented in terms of expectation, so that the
MC estimator of 1−q would be the sample mean. The MC estimator is unbiased and normally
distributed with variance q(1 − q)/s, where s denotes the number of simulation runs. This
means, for instance, that for the estimation of 1 − q = 0.001 with at most 5% relative error
at the 95% confidence level, more than 1.5× 106 simulation runs are necessary. Furthermore,
individual losses conditional on the rare event PL = V aRq(PL) would be much more difficult
to assess. Against this background the estimation of VaR contributions by MC would involve
either unacceptable runtimes or high estimation errors. As has already been pointed out by
Merino and Nyfeler (2004) and Glasserman (2006) among others, a similar problem arises
when estimating ES contributions.

In order to reduce estimation errors, a plain MC simulation has to be modified, increasing
the frequency of rare events while ensuring the estimator remains unbiased. A promising
technique for the simulation of rare events and, therefore, for the estimation of the tail risk
as well as the risk contributions is importance sampling (IS). For the Gaussian conditional
independence framework, Glasserman and Li (2005) have already developed an appropriate
two-stage IS algorithm leading to an asymptotically efficient estimator for a small probability
1− q. Moreover, Glasserman (2006) provides further results on the IS estimation of VaR, ES
and corresponding tail risk contributions. In AppendixA we provide an IS simulation algo-
rithm for the portfolio loss distribution FPL(·) within the Gaussian framework. On the basis
of the simulated distribution F̂PL(·), tail risk measures and corresponding risk contributions
can be estimated, as described in the following.

In order to estimate the VaR at a confidence level q, as defined in (3.5), the following
expression can be used:

V̂ aRq(PL) = inf
{
x ∈ [0, 1] : F̂PL(x) > q

}
. (4.1)
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For the ES, according to (3.8), we obtain the estimator:

ÊSq(PL) =

∑s
k=1 PL

k 11
[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

)∑s
k=1 11

[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

)
+

1

1− q
V̂ aRq(PL)

[
F̂PL

(
V̂ aRq(PL)

)
− q
]
, (4.2)

where k denotes one of s simulation runs.
Regarding a suitable IS estimator for the tail risk contributions, we refer to Tasche (2000)

for the results on the additive contributions associated with quantile-based risk measures.
The author proves that under certain continuity conditions imposed on the joint probability
distribution of the individual loss variables Li = wi · LGDi ·Di, the marginal contributions
derived via differentiation of VaR and TCE can be represented in terms of the conditional
expectation:

wi
∂

∂wi
V aRq(PL) = E

[
Li | PL = V aRq(PL)

]
(4.3)

and

wi
∂

∂wi
TCEq(PL) = E

[
Li | PL > V aRq(PL)

]
. (4.4)

Obviously, the risk contributions given above fulfil the full allocation condition. Thus, addi-
tionally taking the correction of the risk measure for a discrete loss distribution into account,
we are able to define IS estimators for the additive tail risk contributions as follows:

V̂ aRq(Li | PL) =

∑s
k=1 wi · LGDi ·Dk

i 11{V̂ aRq(PL)}

(
PLk

)
l
(
PLk

)∑s
k=1 11{V̂ aRq(PL)}

(
PLk

)
l
(
PLk

) (4.5)

and

ÊSq(Li | PL) =

∑s
k=1wi · LGDi ·Dk

i 11
[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

)∑s
k=1 11

[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

)
+

1

1− q
V̂ aRq(Li | PL)

[
F̂PL

(
V̂ aRq(PL)

)
− q
]
. (4.6)

Applying the IS technique outlined above, instead of a plain MC simulation, can lead to
substantial variance reduction when estimating VaR, ES and ES contributions. Note, never-
theless, that the problem concerning an efficient estimation of VaR contributions persists,
since individual losses conditional on PL = V aRq(PL) are still rare.

5. Measuring and allocating systemic risk using an analytical approximation

Although the number of simulation runs can be reduced considerably by using IS, the
need for an approximative analytical solution has been accentuated repeatedly in the related
literature. For the special case of a single-risk factor model and an asymptotically infinitely
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fine-grained portfolio, there exists an analytical solution for portfolio VaR/ES as well as for
the VaR/ES contributions, (see Gordy, 2003). In this asymptotical setting, the idiosyncratic
risk is diversified away and the risk contributions are portfolio-invariant. In order to mitigate
the underestimation of VaR in finite portfolios, closed-form expressions for a granularity ad-
justment have been derived by Wilde (2001) and Martin and Wilde (2002). Based on their
results, Emmer and Tasche (2003) have determined contributions to the adjusted approxi-
mate portfolio VaR. These contributions are portfolio-dependent due to the existence of an
undiversified idiosyncratic risk.

The adjustment methodology for VaR and ES has been extended more recently by Pykhtin
(2004), who presented an analytical method for an approximative calculation of portfolio
VaR and ES in the case of a multi-factor Merton framework. Based on his results we derive
closed formulae for Euler contributions as partial derivatives of the approximated VaR and
ES. Pykhtin’s approach is outlined in AppendixB for completeness. The basic idea of his
approximative solution is to redefine the multi-factor model presented in section 3 in terms
of a comparable one-factor model whose implied portfolio loss distribution is similar to the
original one. For this purpose a new “effective” systematic factor Ȳ is introduced:

Ȳ =
m∑
k=1

βkZk,
m∑
k=1

β2
k = 1. (5.1)

The tail risk measures can then be approximated by a formula containing Gordy’s ap-
proximation for a limiting portfolio PL∞ within the one-factor framework (superscript Ȳ )
augmented by the adjustment term which corrects for the systematic and idiosyncratic risks
within the multi-factor setting (denoted with ∆):

V aRq(PL) ≈ V aRapprox
q (PL) = V aRȲ

q (PL∞) + ∆V aRq(PL)

and
ESq(PL) ≈ ESapproxq (PL) = ESȲq (PL∞) + ∆ESq(PL).

The components of these formulae are given in AppendixB, equations (B.6, B.7) and (B.14,
B.15) respectively.

The analytical approximations above can be used to derive the additive contributions
associated with the portfolio tail risk measures. Under the assumptions of an infinitely fine-
grained portfolio and only one systematic risk factor, the contribution of an institution i to
the VaR of the limiting portfolio, as defined by equation (B.6), would be completely portfolio-
invariant because of the following result:

∂

∂wi
V aRȲ

q (PL∞) = LGDi · pi(yq). (5.2)

The yq denotes a realisation of Ȳ associated with the (1−q) quantile of its Gaussian probability
distribution: yq = Φ−1(1− q) and pi(yq) is the probability of distress conditional on Ȳ = yq:

pi(yq) = Φ

(
Φ−1(pi)− biyq√

1− b2
i

)
. (5.3)
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In addition to the stand-alone marginal risk contribution, a portfolio-dependent contri-
bution arises according to equation (B.7) by reason of the following multi-factor granularity
adjustment:

∂

∂wi
∆V aRq(PL) =

{
2
[(
PL∞(yq)

)′]2
}−1

×

{
− ∂

∂wi

(
var(PL | Ȳ = yq)

)′(
PL∞(yq)

)′
+
(
var(PL | Ȳ = yq)

)′ ∂
∂wi

(
PL∞(yq)

)′
+

[
∂

∂wi

(
var(PL | Ȳ = yq)

)(
PL∞(yq)

)′ − var(PL | Ȳ = yq)
∂

∂wi

(
PL∞(yq)

)′]

×

((
PL∞(yq)

)′′(
PL∞(yq)

)′ + yq

)
+ var(PL | Ȳ = yq)

(
PL∞(yq)

)′ ∂
∂wi

((
PL∞(yq)

)′′(
PL∞(yq)

)′
)}

.

(5.4)

The derivatives on the right-hand side of equation (5.4) are given by in AppendixC.
In order to calculate an approximation of the marginal VaR contribution of the ith bank

as a percentage of its own exposure, we just need to add up (5.2) and (5.4):

∂

∂wi
V aRq(PL) ≈ ∂

∂wi
V aRapprox

q (PL) =
∂

∂wi
V aRȲ

q (PL∞) +
∂

∂wi
∆V aRq(PL). (5.5)

The approximative VaR contributions defined as

V aRapprox
q (wi | PL) = wi

∂

∂wi
V aRapprox

q (PL), (5.6)

satisfy the full allocation property:

V aRapprox
q (PL) =

n∑
i=1

V aRapprox
q (wi | PL).

Similar to the previous results, risk contributions based on ESȲq (PL∞) in (B.14) would
be portfolio-invariant:

∂

∂wi
ESȲq (PL∞) =

LGDi

1− q
CGauss

(
pi, 1− q; bi

)
. (5.7)

An additional adjustment term corrects for the systematic risk within the multi-factor setting
and for the undiversified idiosyncratic risk. This adjustment term can be obtained by the
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partial differentiation of equation (B.15) with respect to the exposure weights:

∂

∂wi
∆ESq(PL) = − φ(yq)

(1− q)

[
2
(
PL∞(yq)

)′]−1

×
[
∂

∂wi

(
var(PL | Ȳ = yq)

)(
PL∞(yq)

)′ − var(PL | Ȳ = yq)
∂

∂wi

(
PL∞(yq)

)′]
.

(5.8)

So we can approximate the ES contribution as a percentage of institution i’s exposure

∂

∂wi
ESq(PL) ≈ ∂

∂wi
ESapproxq (PL) =

∂

∂wi
ESȲq (PL∞) +

∂

∂wi
∆ESq(PL) (5.9)

or alternatively as a percentage of the total portfolio exposure

ESapproxq (wi | PL) = wi
∂

∂wi
ESapproxq (PL). (5.10)

Again, the approximative ES contributions in (5.10) satisfy the full allocation property:

ESapproxq (PL) =
n∑
i=1

ESapproxq (wi | PL).

6. The Performance of the IS method versus Pykhtin’s approximation

In this section we compare the performance of the IS method versus Pykhtin’s approxi-
mation. This analysis is based on empirical data in order to make it more realistic and and
to increase its validity. The empirical data are described in subsection 6.1 and will be used
again in later sections. Subsection 6.2 contains the main results.

6.1. Empirical expected default rates and other model inputs

The dataset used for the empirical analysis comprises a sample of the world’s largest banks
over a time span from January 1997 to January 2010. The number of banks varies between 54
and 86 depending on IPOs, mergers and data availability. The one-year probability of default
is estimated on a monthly basis by the expected default frequency (EDF) from Moody’s
KMV CreditEdge. The EDFs range from 0.01% to 19% with the median value 0.07% before
September 2008 and 0.32% afterwards. We set the EAD equal to the book value of the
bank’s liabilities, also obtained from CreditEdge on a yearly basis. We transform the yearly
observations into monthly data by linear interpolation. Missing a reliable estimate of a bank’s
LGD, we use the value of 100% for all banks1 which implies the maximum loss rate. Since
the LGD is modelled as a deterministic variable, the risk contributions are linear in LGD
and, therefore, its specific number does not affect our main results.

We define the systematic risk factors by the geographical region in which the bank is
headquartered. Table 1 presents summary statistics of the size distribution of banks in the

1Tarashev et al. (2010) set the LGD-rate to 55% without giving any reasons.
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sample across 6 regions (Europe, North America, South America, Africa, Japan, Asia and
Pacific excluding Japan). The banks listed in the table account for about 2/3 of the worldwide
banking industry assets in 2007/2008 (approximated by assets of the largest 1,000 banks as
reported by IFSL (2010)).

We have set the asset return correlation within the groups to the asset return correlation
average of 42%, estimated for large banks on the basis of the Moody’s KMV GCorr module,
as reported by Tarashev et al. (2010, p 21). It implies homogenous factor loadings ai =

√
0.42

∀i. The heterogeneity in the dependence structure arises from the correlation between the
region-specific systematic risk factors. The off-diagonal elements of their correlation matrix
have been estimated from monthly returns of the Dow Jones Total Market (DJTM) total
return indices for the banking sector in the respective geographical regions, obtained from
Datastream. The estimates are reported in Table 2. They reveal substantial differences in the
correlation between geographical regions which support our choice of a multi-factor instead
of a single-factor model.

6.2. Performance results for the ES estimation

We compare how the proposed simulation and analytical techniques perform with regard
to the calculation of the portfolio tail risk and marginal risk contributions by a three-step
approach. Firstly, we run 100 plain MC and IS simulation scenarios, each scenario comprising
10, 000 independent replications of the portfolio loss variable PL. This enables us to com-
pare the accuracy of the simulation methods and to compute pointwise empirical confidence
intervals for the quantities under consideration. Secondly, we approximate the tail risk and
risk contributions analytically based on the results in section 5. Thirdly, we check whether
these approximated values fall into the confidence intervals, obtained in the simulation.

Figure 1 exemplifies the considerable gain in precision compared to a plain MC simulation
when estimating the loss distribution and the portfolio tail risk by means of IS. Figure 2
compares the performance of the MC and IS estimators for the ES contributions. The box-
and-whiskers plots clearly show a substantial reduction in variability using IS.2

The analytical method performs reasonably well for the calculation of portfolio tail risk
with a tendency to underestimate. For 59% of observations in our case study the approximated
value lies within the 90% error-interval of the IS simulation, as shown exemplary in Figure 3
for the 20 latest observations. Additionally, Figure 4 illustrates the analytically approximated
ES in comparison with the IS-based estimate along with the relative difference between them.
The Pykhtin’s formula exhibits the poorest performance in the period of a relatively low
system-wide risk. The best performance is on the contrary at the peak of the crises. A
more detailed performance test for the multi-factor-adjustment technique was carried out by
Pykhtin (2004). Among other things, Pykhtin shows that the accuracy of the approximation
improves as the risk factor correlation increases and as the relative weight of the largest
exposure in the portfolio decreases.

2We refer to Glasserman (2006) for further numerical examples on the performance of the IS algorithm
concerning the problem of estimating the tail risk contributions for credit portfolios.
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Table 1: Liability (LBS) size distribution of all banks within the sample at the beginning of 2008, aggregated
by country.

Region Country Number of banks Aggregate LBS

billion USD % of total

EU Austria 1 265 0.49
Belgium 2 1,286 2.39
Denmark 1 606 1.12
France 3 5,571 10.33
Germany 4 4,155 7.71
Greece 1 111 0.21
Iceland 1 64 0.12
Italy 3 2,146 3.98
Netherland 2 3,179 5.90
Norway 1 244 0.45
Russia 1 146 0.27
Spain 3 1,988 3.69
Sweden 3 1,122 2.08
Switzerland 2 3,079 5.71
United Kingdom 6 8,758 16.24

AMN Canada 5 2,093 3.88
USA 11 7,274 13.49

AMS Brazil 3 352 0.65
AFR South Africa 3 322 0.60
JP Japan 5 4,577 8.49
AS&P Australia 5 1,589 2.95

China 10 3,456 6.41
Hong Kong 2 212 0.39
India 2 305 0.57
Singapore 3 353 0.65
South Korea 3 654 1.21

Total 86 53,907 100

Table 2: The matrix of estimated Pearson’s correlation coefficients for the composite factors, ρYreg(i),Yreg(j)
.

All p-values are less then 1%

EU AMN AMS AFR JP AS

EU 1.00 0.80 0.65 0.63 0.44 0.85
AMN 1.00 0.42 0.44 0.39 0.73
AMS 1.00 0.50 0.46 0.68
AFR 1.00 0.32 0.62
JP 1.00 0.45
AS 1.00
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Figure 1: Log-lin graph of the portfolio loss tail function in September 2008 estimated via Monte Carlo
simulation and importance sampling. In each case, the three curves show the mean and a pointwise 95%
confidence interval computed on the basis of 100 independent scenarios.
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Figure 2: Comparison of the summary statistics for expected shortfall (ES) contributions in September 2008,
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banks in the portfolio.
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Figure 3: Comparison of expected shortfall (ES) values estimated via importance sampling with those ap-
proximated analytically. The date is always given in the lower right-hand corner. ES is given as a percentage
of the total portfolio liabilities. For each month the analytically approximated portfolio ES is indicated by a
triangle pointing down to its numerical value, whereas the patterns enclose 90% of all 100 sampled ES values
with the mean indicated by a circle. Only the 20 latest observations are shown.
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Figure 5: The relative difference (in percent) between the contributions to the expected shortfall estimated
via importance sampling and those approximated analytically. The banks are on the x-axis.
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Regarding the approximation of the individual risk contributions derived in section 5, we
report in Figure 5 results on the relative difference between the IS-estimated and analytically
approximated ES contributions for some of those time periods when the relative difference
at the portfolio level was less than 1%. The relative difference for most of the contributions
presented is smaller than 5%.

Whereas the analytical approximation of the portfolio tail measures performs well, the
results of the analytical approximation of individual risk contributions should be interpreted
with caution. While the precision of the IS estimator can be improved by simply performing
more simulation runs, the analytical results depend on the portfolio granularity and the corre-
lation structure. Although the contributions calculated using marginal method are generally
guaranteed to be positive for positively correlated risk, it may not longer be the case within
the Pykhtin’s modified setting. Due to the changes in the correlation structure in the course
of the model transformation from the multi-factor (3.1) to the one-factor (5.1) setting, the
impact of the largest exposures in the portfolio may be overvalued. This effect would then be
compensated by reduced and possibly even negative contributions of small-sized exposures in
order to satisfy the additivity property. Thus, the analytical approximation for the risk con-
tributions can, for instance, be used to get preliminary, approximative results when accuracy
is not the issue but only the computational burden.

7. Drivers of systemic risk and systemic importance

The impact of the risk drivers within a credit portfolio framework has been analysed in
great detail in the literature on credit risk. In context of systemic risk, Tarashev et al. (2010)
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presented some stylised examples for hypothetical financial systems in order to examine the
sensitivity properties of the system-wide ES. Thereby the authors applied the one-factor
Merton/Vasicek framework with common factor loadings. The key messages from their work
were:

• The level of systemic risk increases with the individual probabilities of default.

• Greater bank concentration of the financial system, caused either by the increasing
disparity of the relative size of banks or by their decreasing number, raises systemic
risk.

• Higher sensitivity to the common factors (captured by the asset correlation) increases
the likelihood of joint failures and raises the tail risk.

In this section we further explore the impact of the individual probabilities of default, the
relative size of institutions and the asset correlation on the portfolio tail risk measure.

We can confirm the first finding of Tarashev et al. (2010) by using the empirical dataset
and model inputs from section 6.1. Figure 6 shows the ES over the sample period and the
weighted average of the underlying EDF figures. The ES matches very closely the pattern of
the average estimated probabilities of default. Only if we assume a constant EDF, the ES
would follow the pattern of banks’ liabilities, which had been more or less steadily increasing
until mid-2008.

Figure 6: Evolution of the portfolio expected shortfall (ES, black lines, left axes) expressed as a percentage
of the total portfolio liabilities (LBS). Also plotted is the weighted average of EDFs (gray lines, right axes);
the weights are the shares of individual banks in the total LBS.
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Regarding the bank concentration of the financial system, we can isolate the impact of
the relative size for different levels of default probabilities by a simulation exercise based on a
stylised portfolio. For this purpose we consider the special case of a single-factor model and
define a stylised banking system populated by 66 banks which all share the same probability
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Figure 7: Systemic importance of two groups of banks with different size (left-hand plot) and different
exposure to the single systematic factor (right-hand plot). Each of the two groups accounts for half of the
total portfolio exposure.
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of default. All the banks can be separated into two groups, each accounting for 50% of the
overall liabilities. We define one group of 62 equally-sized small banks and another group
of 4 equally-sized big banks. To keep the exposures to the single systemic factor constant
across the system, we set the pairwise asset correlation to 42%. The results for this financial
system are presented in the left-hand panel of Figure 7. Notwithstanding the fact that both
groups are equally sized, the group of big banks accounts for more than 50% of the overall
ES according to its greater bank concentration. This effect is even more distinctive for small
probabilities of default (below 1%) which are typical for the banking sector. Hence, among
relatively sound institutions the banks with larger exposures at distress affect the overall tail
risk disproportionately more heavily. Rising probabilities of default ceteris paribus lead to a
higher overall tail risk and have a positive impact on the systemic importance.

For a heterogenous empirical portfolio, like the one introduced in section 6.1, it is more
difficult to distinguish between the impact of different risk drivers. Therefore, we estimate
the cross-sectional Spearman’s correlation3 between an institution’s contribution to the ex-
pected portfolio loss (which is just the product of the institution’s relative size and its default
probability) and its share in the portfolio ES. The correlation coefficients rage between 81%
and 96% with the median of 91%. Thereby the impact of the size is more pronounced (the
medium correlation between the size and the ES contribution is about 90%) than the impact

3Note, that the Spearman’s correlation increases in magnitude as the two variables become closer to being
perfect monotone (possibly non-linear) functions of each other.
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of a bank’s default risk (the medium correlation in this case is about 26%). These results are
in line with those for the stylised portfolio.

We use the stylised portfolio again in order to explore the impact of the sensitivity to the
common factors which refers to the third finding of Tarashev et al. (2010). For this purpose
we isolate the impact of the asset correlation as a risk driver of the systemic risk and banks’
systemic importance. We divide the portfolio into two homogeneous groups comprising 33
equally-sized banks each. The first group is only moderately exposed to the systematic factor
with the pairwise within-group asset correlation of 20%. The banks assigned to the second
group are instead highly correlated with a coefficient of 60%. The right-hand panel of Figure 7
illustrates the intuitive result that a higher sensitivity to the systemic factor, i.e., a higher
asset correlation, is linked to a higher systemic importance, since the probability of joint
failures increases. This leads to a higher level of tail risk. Again, it is worth noting that the
tail risk contribution of the group of banks with a high sensitivity to the systemic risk factor
increases faster within the range of small default probabilities than is the case for the other
group.

Turning back to the empirical dataset from section 6.1, we investigate additionally the
sample path of the banks’ relative ES contributions in comparison with the banks’ relative
size and their EDFs. These variables are plotted in Figure 8 for the 15 banks with the
historically largest risk contributions within the sample period. The comparison between
size and systemic risk contribution of those major banks along the time axis shows that
their relative ES contribution often considerably exceeds their share in the total liabilities,
indicating an overproportional contribution to the risk of the whole system. Because the level
of the system-wide tail risk is closely related to the overall default risk in the system, as has
already been shown in Figure 6, the changes in the levels of banks’ contributions to the tail risk
are linked to the changes in the individual default probabilities. The corresponding correlation
estimates confirm that statement: Apart from one bank with a significant negative coefficient
and 6 banks with insignificant coefficients (at the 95% level), Spearman’s correlation along the
time axis ranges from a minimum of 18% to a maximum of 96% with the median observation
of 65%.

Summarising, our findings point to the following interpretation of the risk drivers’ impact.
Firstly, changes over time in the joint probabilities of default affect changes in the overall
level of the systemic risk much more than changes in the size distribution of the portfolio.
Therefore, the financial soundness of the institutions under consideration and the correlations
between them seem to be the main drivers of the systemic risk. Secondly, given a particular
level of tail risk at a particular point in time, the distribution of the risk contributions depends
strongly on the size distribution among the banks.

Overall, the link between the size of a financial institution and its systemic risk contribu-
tion is not that obvious due to an interplay of risk drivers in both dimensions: cross-sectional
and over time. Despite a pronounced positive relation between the size of an institution and
its contribution to systemic risk in the cross-sectional context, size alone cannot be consid-
ered as a reliable proxy of a bank’s systemic importance. When the size of a bank increases,
its systemic importance can increase or decrease depending on changes in its own and other
institutions’ risk drivers. In the static context likewise, not only a bank’s individual char-
acteristics affect its systemic importance, but also the composition of the system which the
bank is a part of. This can be seen, for instance, from equation (B.10), which is a part of the
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Figure 8: Dynamics of the banks’ individual shares in the portfolio expected shortfall (solid black lines) in
comparison with the EDFs (solid gray lines) and individual shares in the total portfolio liabilities (dashed
lines).
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approximative solution for an ES contribution (5.9): A bank’s contribution depends on the
size of other banks in the system as well as on the respective default probabilities and asset
correlations with another banks. These findings confirm the need to study systemic risk in a
portfolio context instead of on a single entity basis. Tailoring macro-prudential instruments
simply to the size of a financial institution would be at best an incomplete assessment of its
systemic risk. It would miss key aspects of the risk that it can pose to the real economy and
society.

8. Policy tools – A capital charge for systemic risk and a mitigant of procyclical
effects

A macro-prudential regulation should address both dimensions of the systemic risk, as is
underlined by Borio (2009) among others:

The cross-sectional dimension, addressed in subsection 8.1, relates to the distribution of
the aggregate risk in a financial system at a given point in time. The corresponding policy
issue consists in the calibration of prudential instruments according to the level of the overall
risk in the system and according to the contributions of individual institutions to the system-
wide tail risk.

The time dimension, addressed in subsection 8.2, covers the evolution of the aggregate risk
over time. The corresponding policy issue is to find a way to reduce the possible procyclicality
of regulatory tools based on a measure of the system-wide financial risk.

8.1. Cross-sectional implementation

For implementing a systemic risk charge in the cross-section, a key challenge is how to
internalize the negative externalities caused by financial institutions. This goal is achieved by
using the institutions’ contributions to the systemic risk as the building block. In this section
we put forward a stylised example illustrating how a capital surcharge for systemic-risk can
help the regulator to reduce the tail risk amount.

We consider the situation arising in January 2009 as an example. At this point of time,
the portfolio comprises of 80 banks from the sample in section 6.1. The ES of the portfolio
amounts to 31.38% of the system-wide liabilities or $17,447bn. Individual ES contributions
vary between 0.03h and 4% or $1.8bn and $2,230bn.

As the measurement and allocation of systemic risk involve model uncertainty and esti-
mation errors, it may be advisable not to require a bank-specific surcharge on a continuous
scale. Instead, a less granular approach may be preferable: For instance dividing the insti-
tutions into three different categories A, B and C according to systemic risk ratings.4 We
apply a simple k-means clustering procedure on the ES contributions in order to define those
categories. The k-means method aims to partition the dataset into k groups. The grouping is
done by minimising the sum of squares of distances between the data points and the clusters’
centroids. The results are illustrated in the left-hand panel of Figure 9.

4The IMF (2010, Chapter 2) presents an approach under which regulators assign systemic risk ratings to
each institution based on the amount of system-wide capital impairment that a hypothetical default of each
institution would bring to bear on the financial system. Institutions with a higher systemic risk rating would
be assessed as having higher capital surcharges. The level of capital surcharges would be predetermined –
perhaps having to be agreed upon in international forums.
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Figure 9: The landscape of systemically important banks before and after the policy intervention. 3 groups of
banks have been identified by the k-means clustering method according to their contributions to the portfolio
ES in January 2009. The banks are on the x-axis.
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Let us categorise the four banks belonging to the first group and indicated by diamonds
as A-rated, “highly systemically important” institutions. This group holds 20% of the total
assets of the system and contributes 38.8% to the overall ES. The individual ES contribution
of every bank in this group equals or exceeds 2% of the portfolio exposure. The squares mark
the second category comprises 16 B-rated, “moderately systemically important” banks. They
individually contribute between 0.5% and 1.5% to the portfolio exposure. This second group
of banks holds 47% of total assets and shares 43.5% of the overall tail risk. The remaining 60
banks are indicated by solid circles. They share 34% of total assets and 17.7% of the portfolio
ES. Those banks account for risk contributions of less than 0.5% each and will be denoted as
C-rated, “systemically less relevant” institutions.

We assume that the capital held by banks equals the amount of capital required by
the regulator. Therefore, any capital charge for systemic risk will require an increase of
capital and cannot be drawn from an existing “free” capital buffer on top of the regulatory
minimum requirements. Furthermore, we assume that the systemic risk charge does not affect
neither the size of a bank’s balance sheet nor its exposure to the systematic factors (or asset
correlations). The new capital requirements only affect the debt-to-equity ratio as the banks
substitute their (short-term) debt by capital. In this case, the rising capital charge would
leave the asset value of banks unchanged according to the Modigliani-Miller capital structure
irrelevance principle.

Within Merton’s framework (Merton, 1974), the following functional link between default
probability and leverage ratio applies

pi = Φ

(
ln(DPTi/AV Li)− µAV Li

σAV Li

)
,

where DPT denotes the default point, AVL – the market value of assets, µAV L – the expected
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Figure 10: Mapping the distance to default into the EDF for a one-year time horizon.
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asset return and σAV L – the volatility of asset value. DPTi is defined in such a way, that
a drop in the market value of bank i’s assets below DPTi triggers the default of the bank.
Moody’s KMV model, which builds on Merton’s framework, calibrates DPT as a weighted
average of long-term and short-term liabilities. The model operates with the so called distance
to default (DtD) :

DtDi = − ln(DPTi/AV Li)

σAV Li

. (8.1)

Using the CreditEdge data on EDFs and DtD, we can approximate the mapping function
between DtD and EDF as shown in Figure 10.

We further assume that for each rating category, national regulators have agreed upon a
certain level of capital surcharges. In our simplified example, additional capital requirements
are set to 50% of the current microprudential capital requirements for “highly systemically
important” institutions, to 25% for “moderately systemically important” institutions and to
nil for “systemically less relevant” banks.

According to the assumptions we made, the policy intervention results in a modified
capital structure of the systemically important banks, reducing their short-term debt, as well
as the default point, exactly by the amount of the additionally raised capital. By inserting
the new DPT into (8.1) we find the corresponding distance to default and map it into the
EDF. We use the new set of EDFs to run the analytical approximation of the portfolio ES
and risk contributions after the policy intervention.

The new input parameters change the overall view of the systemic risk landscape, as
demonstrated in the right-hand panel of Figure 9. While the total capital in the system rises
by 17% and the liabilities decrease by 0.75%, the system-wide ES undergoes a reduction of
13.93%. In nominal terms, the amount of capital is increased by $418bn with the effect that
the ES of the financial system is reduced by $2,431bn. In other words the systemic risk charge
reduces the system-wide risk by a factor of about six. The marginal, USD-denominated tail
risk contributions of the banks with ratings A or B decrease. The total risk contribution
of the A-rated banks declines by 30.91% from $6,762bn to $5,165bn and the contribution of
the B-rated banks by 12.71% from $7,598bn to $6,741bn. In response to the changes in the
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portfolio structure, the total USD-denominated risk contribution of the 60 “systemically less
relevant” banks increases slightly by 0.70% from $3,088bn to $3,109bn.

The empirical example relies on a relatively coarse differentiation between three groups
of banks depending on their systemic risk contribution. The capital surcharge has been set
arbitrarily since this example does not offer a methodology to determine a continuous, bank-
specific systemic capital charge (SCC). In the remaining of this section we present an approach
that translates a bank’s contribution to the ES of the financial system into a firm-specific
capital charge.

We consider the i-th institution in the year t that is subject to minimum capital require-
ments (MCR). The key idea is to charge the difference between a “pure” systemic risk con-
tribution and the original regulatory minimum capital requirement. If the micro-prudential
regulatory capital requirement exceeds the systemic risk contribution of a bank, then no
add-on for systemic risk is charged. The following equation summarises this definition of an
ES-based SCC:

SCCi(PL, t) = max

{
EADi(t)

∂

∂wi(t)
ESq(PL, t)−MCRi(t), 0

}
. (8.2)

According to the figures on the total regulatory capital holding by the banks, for which we
could obtain the corresponding data from Bankscope, in 2006/2007 86% out of 63 banks were
well capitalised in the sense that they reported capital exceeding MRSi(t) + SCCi(PL, t) as
defined in (8.2). In 2008/2009 the same was only true for 15% out of 72 banks.

Additional capital requirements as in (8.2) are generally in line with the FSB’s recommen-
dations to strengthen the loss absorbency of systemically important banks (see FSB, 2010).
However, as pointed out by Gauthier et al. (2010), computing macro-prudential capital re-
quirements is more complex than computing risk contributions itself. The simple formula (8.2)
suggests setting the capital surcharges according to the currently observed capital levels and
does not take into account the subsequent changes in the overall systemic risk landscape.
Once new capital requirements are implemented, the banks’ probabilities of default (and po-
tentially also the asset correlations) decline resulting in lower tail risk and changed absolute
and relative risk contributions. For this reason Gauthier et al. (2010) suggest an iterative pro-
cedure to solve for the fixed point at which the capital allocation in the system is consistent
with the banks’ risk contributions. Such reallocation of the capital not only means that the
undercapitalised banks raise capital or de-leverage, but also that the overcapitalised banks
increase their leverage. A superior approach not simply based on the reallocation of the given
total capital, would require the knowledge of the optimal total level of capital required in
the banking system to withstand a predefined shock. The optimal amount of capital is not
necessarily to cover systemic risk completely, since the tail risk in the system can be far too
high to be fully backed with capital.5 Therefore, the level of the total capital requirements
could be on average lower than the amount of the ES. This means that a certain fraction of
the systemic risk will still be borne by the public.

5During the time period under consideration the system-wide exposure (i.e.,
∑n

i=1 LBSi(t)) increased from
23 to 100 percent of the global GDP whereas the amount of the tail risk was varying between 6.8 and 29
percent of the global GDP according to ESq=0.999 or between 3.7 and 16 percent according to ESq(t), which
we will introduce in the following. The IMF’s figures on the world GDP were taken.
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An alternative to a capital charge for system-wide risk can be regular payments by the
systemically important banks into a bank stabilisation fund. Although, this policy measure
does not promote strengthening of the banks’ capital basis, it has the advantage that the
money paid into the fund would be available in a crisis situation without the need to tap the
taxpayer’s purse, e.g., for financing certain bridge banks. A yearly amount to be paid into the
fund could be attributed to individual banks by employing the banks’ relative contributions
to the tail risk of the whole banking sector. Further refinements could be contemplated.
For example, in order to relieve the strain on savings banks and other mostly deposit-taking
institutions, exposures could be reduced by the amount of ensured deposits, which could be
achieved by setting LGDi < 1 accordingly.

Both, a capital charge for system-wide risk and a stabilisation fee would reduce the com-
petitive advantages to become systemically important. The latter statement provides an
incentive for the systemically important institutions to reduce their share in the system-wide
tail risk, which is a desirable effect.

8.2. Smoothing the path of the tail risk measure over time

Within the presented framework the evolution of systemic risk over time is mainly driven
by the co-movement of the probabilities of default in the banking sector. In Figure 6 we have
seen how the use of point-in-time estimates of the default probability based on market prices
can induce procyclicality in the tail risk measure. Market-based measures suggest that the
system is strongest in times when market volatility is below average and market participants
accumulate large amounts of risk. During an economic downturn or turbulent markets, prob-
abilities of default (and asset correlations) increase and the tail risk measure increases. The
described effect by itself is not a problem when considering the portfolio expected shortfall
as a systemic risk indicator for the banking sector. In this regard the utilisation of more
forward-looking estimates of default probabilities would be rather an advantage. However,
in order to establish such macro-prudential tools as systemic capital surcharges a procyclical
pattern of the underlying risk measure may deem undesirable.

To take the procyclical effect into account, we suggest to use a time-varying level of the
regulator’s tail-risk tolerance q(t) for calculating expected shortfall, denoted by ESq(t). We
suggest to link q(t) to the cross-sectional exposure-weighted average of default probabilities
in the banking sector:

q(t) = 1−
n∑
i=1

EADi(t)∑n
j=1EADj(t)

pi(t).

The confidence level for the portfolio under consideration ranges from 98.23% to 99.97%
with a median of 99.85%. It exceeds 99.9% during a boom in a financial sector and declines
below this level otherwise. Therefore, it leans against the cycle and leads to the mitigation of
possible procyclical effects of regulatory tools based on the expected shortfall risk measure.
For example, the capital surcharges based on ESq(t) would be higher during the “good”
times than the surcharges based on ESq=0.999 and vice versa. This effect is indicated with
shaded areas in Figure 11. This figure illustrates a considerable reduction in the variability of
the portfolio-level ES, which we achieve by means of the time-varying confidence level. The
range of variation shrinks from 5.61% – 35.31% to 8.09% – 17.81% of total liabilities. It is also
worth noting, that using joint default probabilities instead of individual ones and allowing
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Figure 11: Evolution of the portfolio ES calculated according to the time-varying confidence levels q(t) (black
line) versus ES at the constant confidence level q = 99.9% (gray line).
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for varying (default) correlations would amplify the observed effect even further. Thereby,
employing more forward-looking estimates of default probabilities instead of the EDFs would
help to rise or loosen capital requirements early enough in anticipation of an upcoming boom
or bust.

9. Summary and conclusions

Addressing the system-wide risk of a financial system by macro-prudential regulation
requires an approach that internalizes the potential costs of a systemic failure. We develop
such an approach by assessing the systemic risk of the financial system and by allocating this
risk to individual banks while the emphasis is on the allocation of systemic risk to individual
banks. We employ for this purpose the Euler allocation principle that is widely used in the
risk management of financial institutions.

In this paper a financial system is modeled as a portfolio consisting of those banks in
the global financial system which may be deemed systemically relevant. From a public purse
perspective we model systemic risk in terms of the expected shortfall (ES) of this portfolio.
The expected losses conditional on exceeding a given level of regulatory tolerance reflect the
potential costs posed to society in the low-probability event such as a systemic crisis, when
the institutions may draw on the (explicit or implicit) guarantees given on their debt.

The portfolio approach used has the additional advantage that the modelling requirements
are based on standard risk management techniques and the basic data requirements are
similar to those under the internal ratings based (IRB) approach of Basel II. For the major
financial institutions, the method provides an assessment tool of systemic importance, based
on publicly available information including market prices. Moreover, the model can be applied
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to smaller, not publicly traded institutions as well, provided that their probabilities of default
and their exposures to common risk factors can be estimated based on available information.

After the tail risk of the whole financial system has been quantified by means of the system-
wide ES, it is allocated to individual banks based on their marginal risk contributions. An
important advantage of this method is the full allocation property, which means that the sum
of systemic risk contributions attributed to individual institutions equal the system-wide risk
in the aggregate. For the purpose of simulation of the portfolio loss function, upon which
the calculation of the portfolio ES and the risk contributions is based, we adopt a two-stage
importance sampling method. The main advantage of this variance reduction technique over
the plain Monte Carlo method is a considerable gain in efficiency when simulating such rare
events as large portfolio losses. We also derive an analytical solution for a fast approximation
of risk contributions based on a formula for the tail risk of a limiting portfolio with a multi-
factor granularity adjustment.

Having conducted an empirical study based on a sample of large international banks, we
find that in the cross-sectional dimension the systemic importance of a financial institution
is indeed tightly linked to the institution’s relative size. But since the formal linkage is non-
linear and portfolio-dependent, size alone should not be considered as a reliable proxy of
systemic importance. Other risk drivers, such as institutions’ probabilities of default and
their exposures to common risk factors, have to be taken into consideration when assessing
systemic importance within a portfolio framework.

As to the assessment of financial firms’ systemic importance, we can abstain from the
binary approach, whereby some firms would be considered of systemic importance and others
would not, which would leave room for regulatory arbitrage. By means of individual tail risk
contributions, the binary concept can be refined to a desirable degree either by introducing
several systemic rating categories or by the utilisation of a direct functional link between an
institution’s marginal contribution to the systemic risk and its degree of systemic importance.

Relying on the marginal ES contributions as a measure of the institutions’ systemic im-
portance, policy tools can be adjusted accordingly. A possible capital-related policy option
would be to impose a systemic capital charge as the amount of the systemic risk contribu-
tion not covered by the minimum capital requirements. Increasing overall risk-based capital
requirements would reduce the probability of systemically important banks becoming dis-
tressed. An alterative non-capital based policy option involves charging a stabilisation fee
that flows into a systemic risk fund. This would cover the externalities in a systemic crisis
and dampen the incentives of financial institutions to become more systemically important.
Thereby a total yearly amount that has to be paid into the fund can be defined at the system
level in a counter-cyclical manner. It will then be allocated among the institutions according
to their shares in the system-wide ES.

Regarding the time dimension of the systemic risk, we have successfully implemented a
time-varying confidence level of the ES risk measure in order to smooth the evolution of the
ES over time. This approach can help to mitigate possible procyclical effects of regulatory
tools based on this measure of systemic risk.

Summarising, the portfolio approach, which we put forward for modelling a system of
financial institutions, can help to understand the complex nature of systemic risk regarding its
cross-sectional dimension as well as its evolution over time. Further theoretical and empirical
research, however, is required to ensure that systemic-risk related policy means are viable
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and robust before they are put into practice.
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AppendixA. Importance sampling algorithm for the portfolio loss distribution

In this appendix we briefly describe the adopted two-stage IS algorithm for simulation
of the portfolio loss distribution and refer to Glasserman and Li (2005) for further details.
If we have a realisation of the systematic factors, than its natural to increase the likelihood
of conditional defaults and, therefore, of tail portfolio losses. So the first step should be to
shift the conditional loss distribution into the region [xq, 1] by increasing conditional default
probabilities.

To make the conditional expected loss equal the threshold xq we set the conditional default
probabilities pi(Yi) (see (5.3)) to their exponentially tilted values pi(Yi, θ), which depend on
the tilting parameter θ:

pi(Yi; θ) =
eθ·wi·LGDipi(Yi)

1− pi(Yi) + ewi·LGDi·θpi(Yi)
. (A.1)

The optimal θ ≡ θxq(y) can be found by solving:

θxq(y) =
{
θ :

∑n

i=1
wi · LGDi · pi(yi; θ) = xq

}
. (A.2)

If xq > E[PL | y], then θxq(y) is positive and the tilted default probabilities pi(yi; θxq(y))
are greater than the original ones, leading to larger portfolio losses. Otherwise, θxq(y) is
negative and should be set to zero in order to estimate the tail risk, because there is no
advantage in reducing pi(yi). So the appropriate choice of the tilting parameter in our setting
is:

θ+
xq(y) = max{0, θxq(y)}. (A.3)

The default events in a portfolio are typically positively correlated. They tend to occur
simultaneously, driven by systematic factors. So a second step is essential to further reduce
the variance of IS estimates: the multivariate Gaussian distribution of the systematic factors
Y = (Y1 . . . Yn)′ should be transformed such that “bad” realisations (negative values, in our
case) occur more frequently leading to more defaults in the portfolio.

The transformation could be accomplished by shifting the mean of Y from 0 to µµµ, leaving
the initial correlation matrix (denoted by Σ) unchanged. Depending on xq, the new mean
vector can be chosen according to the solution of the following maximisation problem:

µµµxq = arg max
y

{
−θxq + CPL|Y(θ)− 1

2
y′Σ−1y

}
, (A.4)

with CPL|Y(θ) =
∑n

i=1 ln
(
1− pi(yi) + ewi·LGDi·θpi(yi)

)
being the cumulant generating func-

tion of the conditional portfolio loss distribution.
It is important to accentuate the fact that there is no need for a repetitive computation of

shifting and tilting parameters for numerous different loss levels. Although the parameters µxq
and θ+

xq(y) depend on a particular loss quantile, it is sufficient for a practical implementation
to choose only one value of xq. This loss level should be located in the tail, close to V aRq(PL)
and can be chosen on the basis of a short preliminary MC simulation run or the approximative
analytical solution we will present later in the paper. The exact position of the loss threshold
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is not critical. For the chosen value of xq the problem (A.4) needs to be solved numerically
only once before starting the first simulation run. θ+

xq(y) has to be determined once for each
realisation y.

Taking this information into account, we suggest the following IS simulation algorithm:

• Choose an appropriate loss level xq.

• Find µµµxq by solving (A.4).

• For each replication k = 1, . . . , s:

– generate a realisation y from N(µµµxq ,Σ);

– calculate pi(yi) = Φ
(

Φ−1(pi)+aiYi√
1−ai

)
for i = 1, . . . , n;

– find θ+
xq(y) as in (A.3) by solving (A.2);

– according to (3.3) generate Bernoulli default indicators either by simulatingDi(yi) ∼
Be
(
pi(yi)

)
for i = 1, . . . , n directly or by means of Xi in (3.1);

– calculate portfolio loss PLk in the kth simulation run as in (3.4);

– calculate the likelihood ratio l
(
PLk

)
which equals to

exp

[
−θ+

xq(y)PLk + CPL|Y
(
θ+
xq(y)

)
+

1

2
µµµ′xqΣ

−1µµµxq − µµµ′xqΣ
−1y

]
.

• Calculate the empirical cumulative distribution function for the portfolio loss according
to

F̂PL(x) = 1− 1

s

∑s

k=1
11(x,1]

(
PLk

)
l
(
PLk

)
, x ∈ [0, 1].

AppendixB. The model of Pykhtin

The “effective” systematic factor Ȳ introduced in (5.1) is the same for all institutions in
the portfolio. Therefore, the model (3.1) can be rewritten in the following way

Xi = biȲ +
√

1− b2
i εi (B.1)

where {εi}i=1,...,n are independent standard normal variables, bi ≡ ai
∑m

k=1 αikβk are the new

factor loadings, and
∑m

k=1 αikβk represents the correlation between Yi and Ȳ .
The optimal choice of the coefficients {βk} is not obvious. Pykhtin suggested maximising

the correlation between Yi and Ȳ :

max
{βk}

{
n∑
i=1

ci

m∑
k=1

αikβk

}
w.r.t.

m∑
k=1

β2
k = 1, (B.2)

ci = wi · LGDi · Φ

(
Φ−1(pi) + aiΦ

−1(q)√
1− a2

i

)
. (B.3)
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Thereby, differentiating the Lagrange function

L
(
{βk} , λ

)
=

n∑
i=1

ci

m∑
k=1

αikβk − λ

(
m∑
k=1

β2
k − 1

)

and putting the partial derivatives to zero yields

βk =
1

2λ

n∑
i=1

ciαik, k = 1, . . . ,m,

λ =
1

2

√√√√ m∑
k=1

(
n∑
i=1

ciαik

)2

=
1

2

√√√√ n∑
i=1

n∑
j=1

cicjρYi,Yj .

In doing so, we can eliminate {αik} from the equation:

bi =
ai
2λ

m∑
k=1

αik

n∑
j=1

cjαjk =
ai
2λ

n∑
j=1

cjρYi,Yj . (B.4)

The factor loadings {bi} are all we need to know about the model representation (B.1) in
order to carry on with the calculation of VaR and ES.

Representation (B.1) has just the form of a one-factor model. In the case of the limiting
portfolio, provided that

∑n
i=1w

2
i → 0 while n→∞, the portfolio loss rate in a one-factor

model is a function of the systematic risk factor

PL∞(Ȳ ) = E[PL | Ȳ ] = E

[
n∑
i=1

wi · LGDi ·Di | Ȳ

]
=

n∑
i=1

wi · LGDi · pi(Ȳ ), (B.5)

and the corresponding asymptotic solution for the portfolio VaR is well known from Gordy
(2003):

V aRȲ
q (PL∞) = PL∞(yq) =

n∑
i=1

wi · LGDi · pi(yq), (B.6)

where pi(yq) is the conditional probability of distress given in (5.3).
The expression above describes the conditional mean of the portfolio loss distribution de-

pending on a “bad” realisation of Ȳ . The second order Taylor approximation of V aRq(PL)6

require an additional correction for the conditional variance. Therefore, we augment ex-
pression (B.6) with an adjustment term, which corrects for the portfolio granularity in the

6See proposition 2.2 in Emmer and Tasche (2003).
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multi-factor setting and can be written as:

∆V aRq(PL) = (B.7)

− 1

2
(
PL∞(yq)

)′
[(

var(PL | Ȳ = yq)
)′ − var(PL | Ȳ = yq)

((
PL∞(yq)

)′′(
PL∞(yq)

)′ + yq

)]
.

The derivatives of the limiting portfolio used in (B.7) can be found in AppendixC, expres-
sions (C.1) to (C.4).

So far there has been nothing special concerning the representation of the one-factor
model (B.1) in terms of a convex combination of {Zk}, as given by (5.1). However, in order
to obtain a formula for var(PL | Ȳ = yq) we need to take into account that asset returns are
actually not independent given a realisation of the effective risk factor Ȳ . It can be seen from
the following representation:

Xi = biȲ +
m∑
k=1

(aiαi,k − biβk)Zk +
√

1− a2
i εi.

In fact, the conditional asset correlation between two distinct institutions i and j is given by

ρȲi,j =
ρi,j − bibj√

1− b2
i

√
1− b2

j

. (B.8)

Although meaningless as a correlation coefficient, expression (B.8) has to be extended to
cover the case j = i, i.e., ρȲi,i = (r2

i − b2
i )/(1− b2

i ).
Asset returns are only independent conditional on the whole set of systematic factors

{Zk}. Thus, according to the law of total variance, we may decompose var(PL | Ȳ = yq)
to separate the variance of the limiting portfolio loss var∞(·) from the effect of granularity
varGA(·):

var(PL | Ȳ = yq) = var∞(PL | Ȳ = yq) + varGA(PL | Ȳ = yq)

= var
(
E[PL | {Zk}] | Ȳ = yq

)
+ E

[
var(PL | {Zk}) | Ȳ = yq

]
. (B.9)

Thereby, E[PL | {Zk}] corresponds to the limiting portfolio loss in the multi-factor setting
(see (3.1) and (3.2)) given by:

PL∞({Zk}) = E[PL | {Zk}] =
n∑
i=1

wi · LGDi · pi({Zk})

=
n∑
i=1

wi · LGDi · Φ

(
Φ−1(pi)− ai

∑m
k=1 αikZk√

1− a2
i

)
.

Taking into account the conditional correlation parameter specified in equation (B.8), the
multi-factor adjustment terms for the limiting case and for the effect of granularity can be
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given by

var∞(PL | Ȳ = yq) = var
(
E[PL | {Zk}] | Ȳ = yq

)
=

n∑
i=1

n∑
j=1

wi · wj · LGDi · LGDj · cov
(
pi({Zk}), pj({Zk}) | Ȳ = yq

)
=

n∑
i=1

n∑
j=1

wi · wj · LGDi · LGDj

[
CGauss

(
pi(yq), pj(yq); ρ

Ȳ
i,j

)
− pi(yq)pj(yq)

]
, (B.10)

varGA(PL | Ȳ = yq) = E
[
var(PL | {Zk}) | Ȳ = yq

]
=

n∑
i=1

w2
i · LGD2

i · E
[(
pi({Zk})− pi({Zk})pi({Zk})

)
| Ȳ = yq

]
=

n∑
i=1

w2
i · LGD2

i

[
pi(yq)− CGauss

(
pi(yq), pi(yQ); ρȲi,i

)]
, (B.11)

respectively. In the equations above, CGauss(·, ·; ρ) denotes the bivariate Gauss copula with
the correlation parameter ρ. It assigns the conditional probability of a simultaneous distress
of institutions i and j (extended to include the case j = i).

Due to the variance decomposition (B.9), the multi-factor adjustment for the portfolio
VaR in equation (B.7) can also be represented as a sum of two terms: one correcting the VaR
of the limiting portfolio for the systematic effect in the multi-factor setting (∆V aR∞q (PL)),
and another, addressing the granularity (∆V aRGA

q (PL)). Then, the approximation formula
turns out to be:

V aRq(PL) ≈ V aRapprox
q (PL) = V aRȲ

q (PL∞) + ∆V aR∞q (PL) + ∆V aRGA
q (PL). (B.12)

As to the expected shortfall, Pykhtin derived an analytical approximation of the ES using
the integral representation (3.6) by setting:

ESq(PL) ≈ 1

1− q

∫ 1

q

(
V aRȲ

t (PL∞) + ∆V aRt(PL)
)
d t

= ESȲq (PL∞) + ∆ESq(PL). (B.13)

The first term in equation (B.13) represents ES in the case of the limiting portfolio within
the one-factor framework:

ESȲq (PL∞) =
1

1− q

n∑
i=1

wi · LGDi · CGauss
(
pi, 1− q; bi

)
. (B.14)

The second term is the multi-factor adjustment defined as a linear function of the conditional
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variance:

∆ESq(PL) = − φ(yq)

2(1− q)
var(PL | Ȳ = yq)(

PL∞(yq)
)′ . (B.15)

Due to the additivity of the variance components (see equations (B.9), (B.10) and (B.11)),
∆ESq(PL) can also be represented as a sum of its systematic and idiosyncratic parts. There-
fore, the analytical approximation of the ES can finally be written as:

ESq(PL) ≈ ESapproxq (PL) = ESȲq (PL∞) + ∆ES∞q (PL) + ∆ESGAq (PL). (B.16)

In the case of large portfolios the systematic parts of VaR and ES, i.e., V aRȲ
q (PL∞) +

∆V aR∞q (PL) and ESȲq (PL∞) + ∆ES∞q (PL), provide a reasonable approximation of the
portfolio risk while the idiosyncratic parts, i.e., ∆V aRGA

q (PL) and ∆ESGAq (PL), vanish.
However, due to the fact that the portfolio under consideration could be relatively small
and perhaps dominated by a few large exposures, the granularity adjustment terms could be
nearly as large as the systematic part.

AppendixC. Derivatives used in the analytical approximation of tail risk and risk
contributions

The first and second derivatives of the limiting portfolio loss with respect to y, initially
used in expression (B.7), are as follows:

(
PL∞(y)

)′
=

n∑
i=1

wi · LGDi ·
(
pi(y)

)′
, (C.1)

(
PL∞(y)

)′′
=

n∑
i=1

wi · LGDi ·
(
pi(y)

)′′
, (C.2)

and the corresponding derivatives of the conditional probability of distress are:

p′i(y) = − bi√
1− b2

i

φ

(
Φ−1(pi)− biy√

1− b2
i

)
, (C.3)

p′′i (y) = − b2
i

1− b2
i

Φ−1(pi)− biy√
1− b2

i

φ

(
Φ−1(pi)− biy√

1− b2
i

)
. (C.4)

According to the variance representation as a sum of the limiting portfolio loss vari-
ance (B.10) and the granularity adjustment term (B.11), the first derivative of the conditional
portfolio variance var(PL | Ȳ = yq) can also be separated into two parts as follows:

(
var∞(PL | Ȳ = y)

)′
= 2

n∑
i=1

n∑
j=1

wi · wj · LGDi · LGDj · p′i(y) [Qji(y)− pj(y)] (C.5)
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and (
varGA(PL | Ȳ = y)

)′
=

n∑
i=1

w2
i · LGD2

i · p′i(y) [1− 2Qii(y)] (C.6)

with

Qji(y) = Φ

Φ−1
(
pj(y)

)
− ρȲi,jΦ−1

(
pi(y)

)√
1−

(
ρȲi,j
)2

 . (C.7)

Then, the derivatives with respect to an individual exposure weight wi, initially used to
derive the multi-factor granularity adjustment for the VaR contributions in (5.4), can be
obtained for both variance components:

∂

∂wi

(
var∞(PL | Ȳ = y)

)
(C.8)

= 2 · LGDi

n∑
j=1

wj · LGDj

[
CGauss

(
pi(y), pj(y); ρȲi,j

)
− pi(y)pj(y)

]
,

∂

∂wi

(
varGA(PL | Ȳ = y)

)
(C.9)

= 2wi · LGD2
i

[
pi(y)− CGauss

(
pi(y), pj(y); ρȲij

)]
.

The corresponding derivatives of (C.5) and (C.6) are:

∂

∂wi

(
var∞(PL | Ȳ = y)

)′
(C.10)

= 2 · LGDi

n∑
j=1

wj · LGDj · pj′(y)
[
Qij(y)− pi(y)

]
+ 2 · LGDi · p′i(y)

n∑
j=1

wj · LGDj

[
Qji(y)− pj(y)

]
,

∂

∂wi

(
varGA(PL | Ȳ = y)

)′
= 2wi · LGD2

i · p′i(y)
(
1− 2Qii(y)

)
. (C.11)

Eventually, the last two expressions also used in the analytical approximation of the risk
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contributions are the following

∂

∂wi

(
PL∞(y)

)′
= LGDi · p′i(y), (C.12)

∂

∂wi

((
PL∞(y)

)′′(
PL∞(y)

)′
)

(C.13)

=
LGDi · p′′i (y)

∑n
j=1 wj · LGDj · p′j(y)− LGDi · p′i(y)

∑n
j=1wj · LGDj · p′′j (y)∑n

j=1 wj · LGDj · p′j(y)
.
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