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Abstract

We use an asset pricing approach to compare the effects of expected liquidity

and liquidity risk on US corporate bond prices, and to assess whether liquidity

effects can explain the credit spread puzzle. Liquidity measures are constructed

for bond portfolios using a Bayesian approach to estimate Roll’s effective cost

measure. We find strong evidence that expected liquidity affects expected bond

returns. In contrast, using various measures for liquidity risk we find no evidence

for a liquidity risk premium. We develop a simple theoretical model to explain

this result. Finally, we find that expected liquidity explains a substantial part of

the credit spread puzzle.
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1 Introduction

Illiquidity plays a major role in corporate bond markets. While some corporate bonds

are traded on a daily basis, many other bonds trade less frequently. The corporate bond

market is therefore very well suited to study the price effects of liquidity. Several studies

have recently examined whether illiquidity affects corporate bond prices. Most of these

studies regress a panel of credit spreads on liquidity measures, thus using liquidity as a

bond characteristic. A few recent articles analyze whether there is a premium associated

with exposure to systematic liquidity risk.1

The first contribution of this paper is that we integrate these two approaches. We

perform a detailed comparison of the effects of liquidity as a bond characteristic (liq-

uidity level) and various forms of liquidity risk. We do this using a formal asset pricing

approach, based on recent models of Acharya and Pedersen (2005) and Bongaerts, de

Jong and Driessen (2011). Given that the liquidity level and liquidity risk exposures

are typically strongly correlated, neglecting either the liquidity level or liquidity risk

may lead to misleading conclusions on the effects of these different liquidity measures

(Acharya and Pedersen (2005) illustrate this for the equity market). Determining which

liquidity channel is most important is relevant for several reasons. First, most theoreti-

cal models that generate price effects of liquidity focus on the liquidity level, and not on

liquidity risk (see, for example, Vayanos (2004) and Vayanos and Wang (2009)). Second,

the extent to which optimal financial portfolios are affected by illiquidity also depends

on whether liquidity risk or the liquidity level is priced. Finally, disentangling these

liquidity effects is important for the valuation of illiquid assets (Longstaff (2010)). Our

results show that the liquidity level has a strong and robust effect on bond prices, while

the effect of systematic liquidity risk is mostly insignificant and always economically

1In section 2 we discuss this literature in detail.
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negligible. We argue that the absence of priced liquidity risk may be due to investors

preferring to trade and rebalance their portfolio using liquid assets such as equities, thus

trying to avoid trading in illiquid corporate bonds. We provide empirical evidence that

supports this claim.

Our second contribution is to show that our liquidity-based asset pricing model sheds

light on the “credit spread puzzle”. This puzzle states that credit spreads on corporate

bonds are much higher than what can be justified by expected losses and exposure to

market risk factors (see Elton, Gruber, Agrawal and Mann (2001) and Huang and Huang

(2003)). We show that liquidity effects play an important role in explaining this credit

spread puzzle. Especially for high-rated bonds, a considerable part of the expected

return can be explained by the illiquid nature of these bonds.

A final contribution of this paper concerns the measurement of liquidity. Measuring

liquidity in illiquid markets is obviously challenging. For our application, we have data

at the transaction level but do not know who initiated the trade. We do not have

price quotes hence we cannot use the Lee and Ready (1991) method to assess the trade

directions. In this context, Hasbrouck (2009) proposes a Bayesian approach to estimate

the Roll (1984) measure of effective transaction costs. We extend his approach to a

portfolio setting and adapt it to fit the bond market. Using the Gibbs sampler, this

approach provides us with time series of returns and liquidity estimates at the portfolio

level.

Our analysis uses data from TRACE (Trade Reporting and Compliance Engine), for

a 2005 to 2008 sample period. Since 2005 essentially all US corporate bond transactions

have been recorded in TRACE. Our sample period includes the 2007-2008 crisis period,

which creates substantial variation that is useful to identify liquidity effects.

A critical issue in any asset pricing test is the measurement of expected returns. This
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is particularly true for corporate bonds. Average returns on corporate bonds critically

depend on the number of defaults over the sample period, and given the rare occurrence

of default events this implies that average returns are noisy estimates of expected returns.

In addition, transaction data for corporate bonds are only available for short sample

periods. Therefore, we follow Campello, Chen and Zhang (2008) and de Jong and

Driessen (2006) and construct forward-looking estimates of expected returns. We do

this by correcting the credit spread, which captures the return of holding corporate

bonds to maturity in excess over the government bond return, for the expected default

losses. This expected loss is calculated using default probabilities from KMV-Moody’s

and assumptions on the loss rate in case of default.

Our empirical approach is as follows. We construct various double-sorted portfolios,

sorting first on credit quality (credit rating, estimated default probabilities) and then on

liquidity proxies (trading volume, bond age, amount issued, liquidity betas). In a first

step, we estimate exposures of these portfolio returns to equity market risk, corporate

bond market risk and systematic liquidity risk. Liquidity risk is captured by innovations

in the aggregate Roll measure for the corporate bond market. In a second step, we regress

the forward-looking expected returns on the portfolio liquidity level, market betas and

various liquidity betas. This is in accordance with the liquidity CAPM of Acharya and

Pedersen (2005) and the model for asset pricing with liquidity of Bongaerts, de Jong

and Driessen (2011).

The first-step results show that corporate bonds have significant exposures to equity

market returns, volatility risk, corporate bond market returns, and systematic liquidity

risk. Equity market returns, volatility risk and liquidity risk together explain more than

60% of the variation in corporate bond returns.

The second-step cross-sectional regressions generate three key findings. First, we
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find a positive and significant price of equity market risk (around 4% per year) and

large negative volatility risk premium. Second, the liquidity level (expected liquidity)

substantially affects expected returns, leading to higher expected returns for portfolios

with lower expected liquidity. This estimate is both economically and statistically large.

Third, we find no evidence that liquidity risk carries a risk premium. The premia related

to the various liquidity risk measures (as prescribed by the Acharya and Pedersen (2005)

model) have a negligible effect on expected returns. We validate these results using a

Fama-MacBeth approach where we incorporate time-variation in expected returns, betas

and liquidity levels. We also construct portfolios that are directly sorted on liquidity

betas and find that even in the cross-section of these portfolios liquidity risk is not priced.

In sum, we show that an asset pricing model with expected liquidity, and equity and

volatility risk premia provides a very good fit of expected bond returns, with a cross-

sectional R2 of about 70%. Across all portfolios, the expected excess bond return equals

about 1.9% per year, of which about 1% is due to expected liquidity, 0.6% due to equity

risk, and 0.3% due to volatility risk. This model fits both expected returns on high-rated

and low-rated bonds very well, and thus goes a long way in explaining the credit spread

puzzle. Including expected liquidity is particularly important for explaining the high

returns on high-rated bonds.

Why is liquidity risk not priced in corporate bond markets, while there is substantial

evidence for a liquidity risk premium in equity markets (Acharya and Pedersen (2005),

Pastor and Stambaugh (2003))? We argue that this can be explained as follows. When

investors want to or need to trade, they naturally prefer to trade more liquid assets and

try to avoid trading less liquid assets.2 Trading needs are often higher in bad times,

since in these times investors need to reduce risk or have funding liquidity shocks that

2Indeed, several articles study optimal rebalancing of assets in case of transaction costs, and derive
no-trading ranges that are higher when transaction costs are higher (see Constantinides (1986) for a
seminal contribution).
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require a reduction of asset holdings. Hence, for relatively liquid assets such as equities,

liquidity risk is very relevant as it captures the extent to which liquidity costs increase

in bad times. For illiquid assets such as corporate bonds, liquidity risk is much less

relevant as in most cases investors will try to avoid trading illiquid assets in bad times.

We develop a simple asset pricing model to support this intuition. To provide empirical

evidence for this hypothesis, we analyze turnover patterns in the equity and corporate

bond market. First of all, we find that average turnover in the corporate bond market

is much lower than turnover in the equity market. In addition, we find that corporate

bond turnover goes down in bad times (when prices decline and liquidity costs go up).

In contrast, for equity markets turnover actually increases in bad times, in line with the

notion that in bad times, investors need to trade more and choose to use the most liquid

assets to do so.

The remainder of this paper is organized as follows. In section 2 we discuss the re-

lated literature. Section 3 introduces the asset pricing models that we estimate. Section

4 describes the data and the Bayesian approach to estimate Roll’s model. Section 5

contains the empirical results. Section 6 concludes.

2 Literature

Our paper is related to two streams in the literature on corporate bonds and liquidity.

The first stream, by far the largest, uses liquidity as a bond characteristic, and analyzes,

typically in a panel setting, the relation between the credit spread on a corporate bond

and its liquidity. This stream includes Houweling, Mentink and Vorst (2003), Covitz and

Downing (2006), Nashikkar and Subrahmanyam (2006), Chen, Lesmond and Wei (2007),

Bao, Pan and Wang (2010), and Friewald, Jankowitsch and Subrahmanyam (2010). Our

paper differs from this stream in two important ways. First, instead of analyzing credit
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spreads in a panel setting, we estimate a formal asset pricing model, where we explain (in

two steps) the time-series of returns and the cross-section of expected returns. Second,

we include both liquidity level (a bond characteristic) and several liquidity risk exposures

in the asset pricing model.

The second, smaller, stream in this literature analyzes the effect of liquidity risk

on corporate bonds. De Jong and Driessen (2006) show that equity market liquidity

risk is priced in a cross-section of corporate bond portfolios, while Acharya, Amihud

and Bharath (2010) show that corporate bonds are exposed to liquidity shocks in equity

and treasury markets. Both articles do not investigate corporate bond liquidity risk.

Downing, Underwood, and Xing (2005) use corporate bond transaction data to construct

price impact measures, and show that a portfolio that mimics illiquidity is priced in the

cross-section of bond returns. Dick-Nielsen, Feldhütter and Lando (2009) mainly focus

on liquidity levels to explain credit spread levels, but do find some effect of liquidity betas

on credit spread levels as well. Lin, Wang and Wu (2010) construct various corporate

bond liquidity risk measures, and show these are priced in a cross-section of corporate

bond returns. We contribute to this literature by (i) studying the pricing of expected

liquidity versus the various liquidity risk covariances in a formal asset pricing framework,

(ii) analyzing in detail why liquidity risk is not priced, (ii) using forward-looking measures

of expected returns, (iii) analyzing how the crisis has affected liquidity pricing, and (iv)

by constructing portfolio-level liquidity measures using a Bayesian approach to estimate

Roll’s model. We show that corporate bond liquidity risk is not priced and that all

liquidity effects on prices are due to the expected liquidity component.

Our paper is also related to the broader literature investigating liquidity effects in

other markets, such as equity markets, government bond markets, hedge fund markets

and private equity markets. This literature is too large to cite in a complete way.

Amihud, Mendelson and Pedersen (2005) provide a thorough survey of this literature.
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Recent work of Lou and Sadka (2010) compares the role of liquidity level and liquidity

risk in the equity market during the recent financial crisis, and finds that stocks with

high liquidity risk underperformed during the crisis relative to stocks with low liquidity

risk, while there is less effect of liquidity level on returns during the crisis.

Finally, our liquidity-based asset pricing model helps to explain the “credit spread

puzzle”. In addition to the seminal work of Elton et al. (2001) and Huang and Huang

(2003), previous work on this puzzle includes Cremers, Driessen and Maenhout (2005),

David (2008) and Chen, Collin-Dufresne and Goldstein (2009). None of these articles

incorporates liquidity effects.

3 Pricing models

In this paper, we follow two approaches to formalize the impact of liquidity on corporate

bond prices. The simplest is a risk factor approach, following Pastor and Stambaugh

(2003) who use this approach to study liquidity risk effects in equity markets. Here we

regress weekly corporate bond excess returns rit on a set of risk factor innovations (not

necessarily returns)

rit = β0i + β′iFt + εit. (1)

The expected excess returns (constructed from credit spreads corrected for expected de-

fault losses, see section 4.4) are then regressed on the betas and the expected transaction

costs

Ê(rit) = λ′βi + ζE(cit) + αi, (2)

where cit denotes the transaction costs (relative to the asset price) and αi denotes the

error term of the cross-sectional regression, which can be interpreted as the pricing error

of asset i. The theory predicts that the intercept in this regression is zero since we
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focus on excess returns. The coefficients λ measure the market prices of factor risk,

and ζ measures the impact of transaction costs and can be interpreted as the turnover

rate of the asset (Amihud and Mendelson, 1986). The risk factors we include are the

equity market return and the innovations in corporate bond market liquidity, while in

robustness checks we also incorporate changes in the VIX index, risk-free rates, and

equity market liquidity.

The second approach we take from Acharya and Pedersen (AP, 2005) which postu-

lates

E(rit) = ζE(cit) + φ
Cov(rit − cit, rmt − cmt)

V ar(rmt − cmt)
, (3)

where rmt−cmt is the average (value weighted) net return on the corporate bond market.

One possible approach would be to use this AP model for the corporate bond market,

in isolation from other markets. This is not very realistic as corporate bond returns are

known to be strongly correlated with equity returns and also with volatility changes.

Bongaerts, de Jong and Driessen (BDD, 2011) build a formal model of liquidity and

liquidity risk pricing in markets with hedging pressure and (potentially) short selling,

where asset returns can be partly hedged by other (so-called benchmark) assets. The

equilibrium pricing equation is similar to the AP model, but the returns and costs are

orthogonalized for their covariance with a set of benchmark assets. Formally, in case of

a single benchmark asset we have

E(r̂it) = ζE(ĉit) + φ
Cov(r̂it − ĉit, r̂mt − ĉmt)

V ar(r̂mt − ĉmt)
, (4)

with

r̂it = rit − βr
i rb,t, βr

i =
Cov(rit, rb,t)

V ar(rb,t)
,
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and

ĉit = cit − Et−1(cit)− βc
i rb,t, βc

i =
Cov(cit − Et−1(cit), rb,t)

V ar(rb,t)
,

and with rbt the return on the benchmark asset.3 Similar to AP, we incorporate that

transaction costs are persistent over time by focusing on innovations cit−Et−1(cit). The

’market’ return and cost factors r̂m and ĉm are value weighted averages of the individual

returns and costs.4 Empirically, we allow for two benchmark assets, the equity market

index and the VIX index.

The empirical model proceeds in two steps. In the first step, corporate bond excess

returns and corporate bond transaction cost innovations are regressed on a set of bench-

mark assets. This produces estimates of the exposure coefficients βr
i and βc

i . We also

calculate the elements of the last term in equation (4)

βrr
i =

Cov(r̂it, r̂mt)

V ar(r̂mt − ĉmt)
(5)

βrc
i =

Cov(r̂it, ĉmt)

V ar(r̂mt − ĉmt)

βcr
i =

Cov(ĉit, r̂mt)

V ar(r̂mt − ĉmt)

βcc
i =

Cov(ĉit, ĉmt)

V ar(r̂mt − ĉmt)
.

The expected returns then follow from

E(rit)− E(rbt)β
r
i = ζ(E(cit)− E(rbt)β

c
i ) + φ(βrr

i − βrc
i − βcr

i + βcc
i ). (6)

In practice, we do not know the expected return on the benchmark assets E(rbt) and

3This model is simpler than the original BDD model: it assumes there are no non-traded risk factors
that correlate with corporate bond returns.

4Another possible approach would be to apply the Acharya-Pedersen model to both the entire equity
market and the corporate bond market. This would assume perfect integration of the two markets, and
require a liquidity factor that combines equity and corporate bond market liquidity.
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treat it as a parameter (λ) to be estimated. This model is linear in all parameters except

ζ. However, if we take a preliminary estimate ζ = ζ0 to construct βi = βr
i − ζ0βc

i , the

model is linear and can be estimated by OLS. In the empirical work, we set ζ0 = 1.189

(implying a turnover rate of about 10 months), which is the estimate from Table 2,

specification (5).5 Following AP, we also allow each component of the last covariance

term to impact the expected return. The final model thus is

Ê(rit) = λ(βr
i − ζ0βc

i ) + ζE(cit) + φ1β
rr
i + φ2β

rc
i + φ3β

cr
i + φ4β

cc
i + αi. (7)

The residuals αi can again be interpreted as pricing errors.

Note that the first approach, the risk-factor approach, can be used to study the

credit spread puzzle, as long as we do not use the corporate bond market return as risk

factor (to avoid that the puzzle is present on both the left-hand side and right-hand

side of the equation). We then explain the expected corporate bond returns from equity

market risk exposure and liquidity effects. The second approach has the corporate bond

market return on the right-hand-side (through βrr
i in equation (7)), and can therefore

not be used to study the credit spread puzzle. The second approach is suited however

to study the various sources of liquidity risk in detail.

4 Measuring bond returns and liquidity

For our analysis we use individual bond transaction data from the TRACE database.6

From July 2002 onwards the NASD discloses all corporate bond trades that all its

affiliated traders are required to report. Initially only trades in a limited number of

bonds were disclosed, but gradually disclosure expanded to reach full disclosure from

5In a next draft we plan to do full GMM estimation.
6A good description of the TRACE data can be found in Lin, Wang and Wu (2010).
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October 2004 on. We thus download all trade data from TRACE from October 2004 up

to end of December 2008 so that we have a sample with homogeneous coverage.

4.1 Data filters and portfolio selection

We apply several filters to our dataset to remove bonds with special features that we

do not want to consider and to remove erroneous entries. Our filters are very similar

to those employed in Bongaerts, Cremers and Goetzmann (2010). We remove all trades

that include commission, that have a settlement period of more than 5 days, and all

trades that are canceled or reversed. Trade volumes are truncated by the system and

we replace truncated trade volumes by their respective truncation barrier ($5 million

for Investment Grade and $1 million for High Yield). We remove all trades for which

we have a negative reported yield, since these will be mainly driven by implicit option

premia in the yield. We use Bloomberg to match the trades to bond characteristics and

S&P ratings using CUSIPs. We discard all bonds with convertibility options, that are

putable, that have a non-fixed coupon, that are subordinated, secured or guaranteed.

We keep callable bonds because they comprise a large part of the sample. Moreover, we

discard all zero-coupon bonds. We also remove trades with a settlement date later than

or equal to the maturity date. Furthermore, we found several duplicate records, resulting

from both parties involved in a trade reporting to the system. We filter out these trades

by consecutively sorting on bond, date and volume and removing identical consecutive

records. Moreover some of the yield changes are unrealistically high. Therefore, we

remove trades with yield changes of more than 1000 basis points (about 0.15% of our

trades). Finally, we focus on institutional trades since the corporate bond market is

dominated by institutional traders.7 To this end, we exclude all trades with a volume

7Based on Federal Reserve Flow of Funds accounts, Campbell and Taksler (2003) report that only
15% of all US corporate bonds are held by households with another 15% to 20% held by foreign residents,
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lower than $10,000. As Ford and GM together were responsible for more than 10% of all

corporate bond trading, we excluded these issuers to avoid portfolios to be completely

driven by individual companies. In total, we end up with approximately 4.4 million

bond trades. For each bond we calculate a yield and a credit spread by comparing the

bond yield with a duration-based weighted average of the yield on two treasuries with

bracketing duration.

As is usual in the asset pricing literature, we fit the model to different test portfolios

rather than to individual assets. To this end, we form portfolios which are sorted first on

credit quality and thereafter on liquidity. To increase the number of test assets, we sort

in each dimension using different variables. To conduct the credit quality sort, we use the

S&P credit rating at the end of the previous quarter (AAA, AA, A, BBB, BB, B, CCC)

or the cumulative default probability over the life of the bond estimated by Moody’s-

KMV EDFs (quintile portfolios). For the liquidity dimension, we sort by amount issued,

bond age and number of trades in the previous quarter. Amount issued and age have

been shown to be good proxies for liquidity by Houweling, Mentink and Vorst (2005),

while typically the number of trades will be higher for more liquid securities. In the

liquidity dimension, we categorize a bond as either liquid or illiquid. The cutoff point

for amount issued and age is the median, whereas for the trade count it is the 70%

percentile. This proportion is required to ensure that there are enough trades in the low

activity portfolio. The AAA and CCC rated portfolios contain too few observations to

conduct a double sort, but are included as rating portfolios. This yields 62 portfolios

consisting of in total over 4 million trades in almost 15,000 different bonds. These

portfolios form the basis of our tests.

while the rest is held by institutions.

12



4.2 The Roll model for bond returns

Estimating returns and transaction costs from the TRACE data is not trivial. The data

contain a record of transaction prices and trade volume, but no quote or bid-ask spread

information. The data also do not indicate whether the transaction was a buy or a sell.

The data are also irregularly spaced: some bonds trade several times a day, but many

bonds trade very infrequently. To deal with these issues, we use the basic Roll (1984)

model suggested by Hasbrouck (2009) as the basis of our analysis, and adapt it to a

setting where we form portfolios of bonds. We start with modeling the credit spread of

bond i at time t, denoted CSit as

CSit = mit + citqit, (8)

where mit is the efficient credit spread level and qit is an i.i.d. trade indicator that can

take values +1 and −1 with equal probability. The coefficient cit is the effective bid-ask

half-spread in yield terms (effective transaction costs). We focus on credit spreads rather

than prices to take out most of the effects of interest-rate risk and implicit weighting

induced by maturity differences.

Following Hasbrouck (2009), we write this model in first difference form

CSit − CSi,t−1 = ∆mit + citqit − ci,t−1qi,t−1, (9)

where ∆mit is the innovation in the efficient credit spread. We model the change in this

efficient credit spread as the sum of an element common to the portfolio to which bond

i is allocated, and an idiosyncratic component

∆mit = zit∆Mt + uitvt, (10)
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where ∆Mt ∼ N(0, σ2
M) represents the portfolio-level spread change, uit ∼ N(0, σ2

u) the

idiosyncratic shock with vt an observable scale factor that captures heteroskedasticity.

This is important as the volatility of idiosyncratic shocks may change over time. Em-

pirically we use the level of the VIX index for vt. We let the loading on the common

factor ∆M be dependent on the bond duration with

zi,tik = 1 + γ(Durationik −Duration), (11)

where γ is estimated in a first step, Durationik is the duration of bond i at trade k, and

Duration is the average duration of all bonds in the portfolio.8 This factor zik captures

patterns in the term structure of volatilities: for example, if long-term credit spreads are

less volatile than short-term credit spreads, one would expect a negative γ. The latent

components ∆M and u are independent. Furthermore, we assume that the transaction

costs are the same for all bonds in the same portfolio

cit = ct. (12)

In our analysis, we use hourly time intervals, but not every bond trades each hour

and we therefore use a repeat sales methodology (see, for example, Case and Shiller

(1987)). Let tik denote the time of the k’th trade in bond i. Taking differences with

respect to the previous trade of bond i, these assumptions lead to the complete model

for all data in the same portfolio

CSi,tik − CSi,ti,k−1
=

tik∑
s=ti,k−1+1

zis∆Ms + ctikqi,tik − cti,k−1
qi,ti,k−1

+ eit, (13)

8Specifically, γ is estimated by using a repeat-sales methodology to estimate a restricted version of
equation (13) with the transaction costs c set to zero.
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where eit =
∑tik

s=ti,k−1+1 uisvs. We estimate the components of equation (13) using a

Bayesian approach and the Gibbs sampler. For each portfolio, this approach gives us

posterior distributions for the time-series of the common credit-spread factor ∆M, the

transaction costs c, and the posterior probabilities of the trade indicators q. Appendix A

details this estimation method (based on the work of Hasbrouck, 2009) in full detail.

In the actual estimation, we assume the transaction costs to be constant within every

week, and estimate credit spread changes ∆M for every hour. We transform these credit

spread changes to returns r by multiplying these changes with (minus) the duration of

the bond portfolio. This gives (to first order) the return on the corporate bond portfolio

in excess of the government bond return. Similarly, the transaction costs in terms of

yields are transformed to price-based transaction costs by multiplying the costs c by

the bond duration (see Bongaerts, de Jong and Driessen (2011) for a derivation of the

relation between yield-based and price-based transaction costs).

These returns are then aggregated to weekly returns, so finally the Roll model pro-

duces a time series of weekly portfolio excess returns and transaction costs. In the

equations above we suppressed the subscript of each portfolio j. In the remainder of the

paper, the subscript j refers to portfolio j.

4.3 Validation of the liquidity estimates

As of November 2008, the TRACE data do contain the trade indicators qit: for each

transaction it is recorded whether this was buyer-initiated or seller-initiated. This allows

us to do a strong check on the estimation of the Roll model describe above. We thus

estimate the transaction costs in equation (13) in two ways. First, we use the Gibbs

sampler, where we do not use information on the trade indicators (“indirect” approach).

Second, we use the observed trade indicators in which case (13) can directly be estimated
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using a repeat-sales regression approach (“direct” approach).

We perform this analysis on the portfolios where we first sorts on rating or EDF,

and then on amount issued. We calculate the correlation between the weekly series

of transaction costs, estimated using either the direct or indirect approach, using data

until end of 2009. We find that the average of these time-series correlations equals 78%,

and the correlations range between 63% and 97% across portfolios (except one portfolio

which has correlation of -4.5%, this portfolio has relatively few bond issues). Also, the

average level of the direct and indirect transaction costs is very similar: 1.35% (direct)

versus 1.32% (indirect) on average. This shows that, even though we do not observe the

trade indicators in 2005 to 2008, it is possible to reliably estimate transaction costs on

corporate bonds using the Gibbs sampling method.9

4.4 Time series model for liquidity

The betas in the asset pricing model are defined as the ratio of conditional covariances

and variances, that is, the (co)variances of the shocks (innovations) in returns and costs.

We assume that returns have no serial correlation and we take the residuals of an au-

toregressive model as the liquidity innovations

cj,t = b0j + b1jcj,t−1 + εj,t, (14)

where cj,t denotes the portfolio-level transaction costs. The coefficient on the lagged

transaction cost b1 equals 0.837 (averaged across portfolios). We also estimate the

market-wide transaction costs (averaging costs across portfolios). The innovations in

these market-wide costs is what we use as liquidity risk factor in our asset pricing model.

9We do not use 2009 data for our asset pricing tests since we do not have EDF data for this period.
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As a robustness check, we also analyze the effects of exposure to equity market

liquidity. Following Acharya and Pedersen (2005), we construct this measure by taking

AR(1)-innovations to the value-weighted mean of Amihud’s (2002) ILLIQ measure across

all stocks in CRSP.

Innovations in the risk-free rate and volatility index VIX are also constructed using

AR(1) models.

4.5 Expected return estimates

To calculate the expected excess return Ê(rj) on a corporate bond portfolio j, we take

the observed credit spread and correct it for expected default losses. This procedure

follows de Jong and Driessen (2006), Campello, Chen and Zhang (2008), and Bongaerts,

de Jong and Driessen (2011), who show that it yields much more accurate estimates of

expected returns than simple averaging of historical excess returns.

The method works as follows. Consider bond i. Denote the cumulative default

probability over the entire maturity of the bond πit, the loss given default L (assumed

to be 60%), the yield on the bond yit and the corresponding government bond yield

ygt. We approximate the coupon-paying bond by a zero-coupon bond with maturity

equal to the duration of the coupon-paying bond, Tit. Assuming that default losses

are incurred at maturity, the expected return of holding the bond to maturity equals

(1 + yit)
Tit(1 − L · πit). We then annualize this number and subtract the annualized

expected return on the corresponding government bond to obtain our expected excess

return estimate

Et(ri) = (1 + yit)(1− L · πit)1/Tit − (1 + ygt). (15)

Note that this gives an estimate for the expected return at each point in time t.
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Default probability estimates πit, needed to construct these expected excess returns,

are obtained from Moody’s-KMV EDF Database. We have data on the average 1-year

and 5-year annualized expected default frequency EDFs, which capture the conditional

default rate in the first and fifth year, respectively. We construct the conditional ex-

pected default frequency for every bond trade as the duration weighted average of the

one-year and five-year EDFs. For durations longer than 5 years, we assume that the

conditional default rate is flat beyond 5 years. From these bond-specific EDFs we obtain

the expected cumulative default probabilities over the entire maturity of the bond (πit).

We prefer using Moody’s-KMV EDFs over rating-based historical default frequen-

cies because, especially in the last two years of the sample (2007 and 2008), we observe

a strong increase in the EDFs ; it is not obvious how to adjust for these new market

circumstances when using rating-based historical default frequencies. The expected ex-

cess portfolio return is then constructed each week by averaging the expected excess

returns over all trades in the portfolio in that week that have an EDF available. The

unconditional expected return for a portfolio is given by the time-series average across

weeks.

5 Empirical results

5.1 Expected returns, transaction costs and betas

Table 1 presents averages of expected returns, costs, betas and associated t-stats across

portfolios and over the full 2005 to 2008 sample period. The first key result in Table

1 is that the estimated transaction costs are substantial, on average about 0.8% across

portfolios and over time. These numbers are very similar to those of Bao, Pan and Wang

(2010) who use a different method to estimate Roll’s model for corporate bonds. They
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report a median bid-ask spread of 1.50%, implying transaction costs of 0.75%, close to

our estimates. As noted by Bao, Pan and Wang (2010), these estimated costs are higher

than quoted bid-ask spreads as found in Bloomberg, and they argue that the Roll model

thus captures liquidity effects that go beyond the quoted bid-ask spread. The second

result in Table 1 is that we find large positive expected returns (in excess of government

bonds), around 1.9% per year on average, in line with earlier evidence on the credit

spread puzzle. The Newey-West corrected t-statistics on the expected return estimates

are high (average t-stat of 4.8), which shows the usefulness of estimating expected returns

from credit spread levels.

The time series of market-wide average expected returns and transaction costs is

shown in Figure 1. Clearly, the two series are strongly correlated and peak during events

in the credit crisis, such as the March 2008 Bear Sterns failure and the September 2008

Lehman collapse. Both Dick-Nielsen, Feldhütter and Lando (2009) and Bao, Pan and

Wang (2010) report similar illiquidity spikes in 2008.

Following equation (1), Table 1 also reports results of univariate and multivariate

regressions of bond returns on various factors: (i) equity market (S&P500) returns, (ii)

volatility shocks, measured by innovations in the VIX index, and (iii) systematic bond

liquidity shocks (market-wide level of corporate bond transaction costs). We see that

corporate bonds have significant equity market exposure, which by itself explains on

average 50% of the time-series variation. We also see that corporate bond returns have

significant negative exposure to systematic liquidity shocks, measured by innovations in

the market-wide level of corporate bond transaction costs. This exposure explains alone

on average about 26% of the time-series return variation. Turning to volatility risk,

we see a strong negative exposure, as expected, which explains 53% of the time-series

variation. Hence, volatility risk is even more important as a time-series determinant of

corporate bond returns than equity returns. When we look at the multivariate betas,
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we see that the equity and volatility betas both become substantially smaller, which is

due to the strong negative correlation between equity returns and volatility shocks (the

“leverage effect”). The average time-series R2 for this multivariate regression is 62%.

Finally, Table 1 reports the returns, costs and betas of high-liquidity and low-

liquidity portfolios. Recall that our portfolios are first sorted on rating or EDF, and

then on one of the three liquidity proxies, bond age, amount issued and volume. For

each rating level or EDF quintile, we thus have a high-liquidity and low-liquidity port-

folio for each liquidity proxy (except for the AAA and CCC ratings). Table 1 reports

averages across all rating-based or EDF-based portfolios and across the three liquidity

proxies. We see that low-liquidity portfolios have higher expected returns and higher es-

timated transaction costs, suggesting an effect of transaction costs on expected returns.

In contrast, there is little difference in equity or volatility betas, which shows that, once

we sort on rating or EDF, the liquidity sort is indeed capturing liquidity effects and not

differences in market or volatility risk exposure. We also see that the liquidity betas of

the low-liquidity portfolios are closer to zero than those of the high-liquidity portfolios.

There is substantial variation in liquidity betas across portfolios however: the bond mar-

ket liquidity exposures range from -1.8 to about -8.9 (or -0.1 to -7.6 for the multivariate

betas) across portfolios (non-tabulated), so that our data should be informative about

the presence of a liquidity risk premium.

5.2 Asset pricing tests: Risk-factor approach

5.2.1 Benchmark results

In this subsection we focus on the first asset pricing approach where we include equity

market returns and systematic liquidity shocks in the corporate bond market as factors,
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and the expected transaction costs as portfolio characteristic (equations (1) and (2)).

In robustness checks, we include volatility shocks (innovations in VIX), risk-free interest

rate shocks (3-month T-bill rate) and equity market liquidity shocks (innovation in

equity-market ILLIQ measure) as additional factors.

Then, to test the pricing of corporate bonds, we run a cross-sectional regression

of the average expected excess returns on the estimated risk factor exposures and the

average expected transaction costs. The averages and the betas are estimated over the

full sample period 2005-2008. As the betas and the expected costs contain estimation

noise, the standard errors of the regression are calculated using an extension of the

method by Shanken (1992).10 Notice that the regressions do not contain an intercept,

which is consistent with the model in equation (2).

Table 2 shows that, in univariate regressions, the equity beta and expected cost

have a positive coefficient (specifications (1) and (3)). The liquidity cost beta has a

negative coefficient, as expected (specification (2)): given the negative liquidity betas,

the product of the liquidity beta and liquidity premium is positive. All estimates are

strongly significant, although liquidity risk has low cross-sectional explanatory power:

it has a negative cross-sectional R2, which implies that the model with priced liquidity

risk explains less of the expected return variation than a model with a constant term

only.

Of course, the more important question is whether the corporate bond prices are

affected by both expected transaction costs and liquidity risk. This is investigated in

multiple regressions, where the equity beta is always included (specifications (4) and (5)).

With all three variables included, the liquidity beta coefficient has a positive sign. This

implies a counter-intuitive negative contribution to the risk premium. However, the effect

10The Internet Appendix of BDD provides more details on the procedure.

21



is economically small: for example, when we add liquidity risk to the model with equity

risk only, the cross-sectional R2 does not increase (R2 of 47.2% in both specifications

(1) and (4)). Expected liquidity continues to have a positive and significant impact

when we control for liquidity risk and equity risk: adding expected liquidity increases

the R2 from 47.2% to 65.5%. The coefficient on expected liquidity can be related to the

trading frequency of bonds. The coefficient of 1.189 in specification (5) corresponds to

a turnover frequency of about 10 months, which seems reasonable.11

When we include additional risk factors such as volatility risk, interest rate risk and

equity market illiquidity shocks (see the multivariate regression specifications (6)–(8)),

we see that the effect of expected liquidity remains positive and significant. In fact, the

coefficient on expected liquidity is very stable across specifications (between 1.19 and

1.40). In contrast, the bond liquidity risk premium changes sign across specifications

and is economically small. Of the additional factors, we find evidence for a large and

significant volatility risk premium: bonds with higher (i.e. more negative) volatility

exposure have higher expected returns.12 The exposure to equity market liquidity risk is

also significantly priced with the “correct” sign. Finally, note that the estimated equity

premium is always significantly positive and reasonable in size (between 3% and 5.2%

per year).

Figure 2 graphs the fitted values of the risk premium according to specification (7),

for the portfolios sorted on rating and liquidity proxies (Panel A) and for the sorts on

EDFs and liquidity (Panel B). The graphs present the average across the three liquidity

proxies per rating/EDF category and show that the equity risk premium and the ex-

11Note that this should not be interpreted as the equally-weighted average turnover across bonds.
Since we use transaction data, bonds that trade more often have a higher weight in our sample. Hence,
the expected liquidity coefficient captures some trade-frequency weighted average of turnover across
bonds.

12Such a volatility risk premium has also been found in the cross-section of stock returns (see Ang,
Hodrick, Xing and Zhang (2006)) and for index options (see e.g. Bollerslev, Tauchen and Zhou (2009)).
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pected liquidity premium together explain most of the observed credit spreads, with a

smaller contribution of volatility risk and a negligible effect of liquidity risk.

These results shed light on the credit spread puzzle. Huang and Huang (2003) show

that structural models of default risk generate credit spreads well below observed credit

spread levels. We find similar results using our asset pricing approach. Equity market

and volatility risk exposure explain only a part of the level of expected bond returns.

In particular, equity and volatility betas of high-rated bonds are very low, so that only

with extremely high equity and volatility risk premia it would be possible to explain the

relatively high expected returns on these bonds. However, such high market risk premia

would (i) be inconsistent with premia observed in for example equity markets, and (ii)

imply too high expected returns on lower-rated bonds, given that these bonds have high

exposure to market and volatility risk. Incorporating liquidity effects, mainly expected

liquidity, resolves this puzzle. As shown in Figure 2, a substantial part of the expected

return of high-rated bonds is due to expected liquidity. The model provides a very

good fit of expected bond returns across all portfolios, and does not underestimate the

expected return on high-rated bonds. In fact, for high-rated bonds the model predicts

expected returns that are slightly higher than the observed average returns.

So far, all results are based on the full sample (2005-2008). However, our forward-

looking approach of calculating expected returns can be done on a weekly basis. Simi-

larly, expected costs are also estimated each week. This makes a Fama-MacBeth estima-

tion of the model on a weekly basis possible. However, the right hand side betas cannot

be calculated with only one week of data. Therefore, we use the following procedure: we

estimate betas using 52-week (backward-looking) rolling windows, and the second-step

equations are estimated using four-week rolling windows.

Figure 3 graphs the results for the model including the equity, volatility and transac-
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tion cost betas, and expected costs. The left-hand panels of Figure 3 show the estimated

betas and transaction costs. For each week, the graphs show the cross-sectional average

over all portfolios. We see that all betas increase (in absolute value) from the start

of the financial crisis in mid-2007. The transaction costs also increase from that pe-

riod onwards, and increase very substantially around the Lehman collapse in September

2008. The middle panels show the estimated coefficients from the weekly second step

regressions. The coefficients are remarkably stable over time. The right-hand panels

show the implied equity, volatility and liquidity risk premiums (top-right panel), and

the expected liquidity premium (bottom-right panel), obtained by multiplying the betas

with the estimated coefficients from the second step regressions. These graphs clearly

show an increase in the equity and volatility risk premiums from mid-2007. The liquidity

risk premium is small and unstable, though. The expected liquidity premium increases

from 80 basis points to around 2.5 percent for the average portfolio.

The average weekly estimates and their Newey-West t-stats are reported in the

column labeled “FB” in Table 2. The average estimated equity premium is around 5

percent, the volatility and liquidity risk premia are significantly negative, although the

liquidity risk premium is economically negligible. The estimated coefficient of transac-

tion costs is in the same order of magnitude as in the full sample estimates. In sum,

these time-varying results support our main finding that expected liquidity has a strong

effect on bond prices, while the effect of liquidity risk is very small.

5.2.2 Sorting on liquidity betas

The results above indicate that the effects of liquidity risk on corporate bond prices are

economically small. However, this finding may be caused by a lack of cross-sectional

variation in liquidity betas making estimation of a risk premium difficult. Therefore,

24



similar to Pastor and Stambaugh (2003) we now construct test assets that are also sorted

on liquidity betas. This requires liquidity beta estimates at the individual bond level.

The challenge here is that many bonds do not trade very frequently and estimation of

individual betas for these assets is problematic. Moreover, beta estimates for individual

instruments can be rather unstable and sensitive to outliers.

To deal with these issues, we use a Bayesian approach. Our liquidity beta for each

bond is calculated as a weighted average of the direct regression estimate (obtained by

regressing individual bond returns on the liquidity factor) and a portfolio-based beta.

This portfolio beta is obtained by using the liquidity beta of the portfolios to which

the bond was assigned in the analysis above. The liquidity beta of these portfolios is

our “best guess” (or, in Bayesian terms, “prior”) of the true liquidity beta of the bond

in case insufficient trading data for this bond is available. The more precisely we can

estimate the individual bond liquidity beta from transaction data, the less weight we

want to give to these portfolio betas. This is exactly what our Bayesian solution here

achieves.

More specifically, we estimate the portfolio liquidity betas and their standard errors

from a regression of bond portfolio excess returns on market liquidity innovations for all

double sorted portfolios across quality (rating and EDF) and liquidity (age, issue size,

trading volume) as well as the AAA and CCC rated portfolio. We do this on a weekly

basis using a one-year rolling window. For each portfolio we then create quarterly betas

and standard errors by averaging the betas over all weeks in the quarter and calculating

the appropriate covariances. Next we average for each bond-quarter the betas and

standard errors13 of all portfolios in which that bond was contained.

13This implicitly implies a correlation of one between beta estimates of different portfolios; betas are
typically highly correlated across liquidity sorts. If anything, this would put too little weight on the
portfolio betas.
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For each bond, we also estimate the direct liquidity beta. To this end, we estimate

a beta and standard error from the univariate regression of the individual bond excess

returns on market liquidity innovations. We again do this on a weekly basis using the

last trade available every week on a one-year rolling window, where we require at least

25 observations and where the smallest and largest observation are winsorized.

When constructing the portfolios for a given quarter, say Q2 2006, the one-year

rolling window used to estimate these betas includes this quarter, hence we use data

from Q3-Q4 2005 and Q1-Q2 2006 in this example. We thus essentially use a mixture

of the pre-ranking and post-ranking betas to form portfolios. This has the advantage

that it generates more variation in the liquidity betas used to estimate the asset pricing

model. The disadvantage is that these portfolios are not ex-ante tradable portfolios, but

this is not an issue for estimating and testing asset pricing models.14

Having obtained the portfolio beta and the direct beta we can now use the standard

Bayesian formula to calculate our posterior beta

βpost
liq =

var(β̂port
liq )−1β̂port

liq + var(β̂direct
liq )−1β̂direct

liq

var(β̂port
liq )−1 + var(β̂direct

liq )−1
. (16)

Portfolio double sorts are then conducted again as before using a sequential sort, first

on credit quality (rating or EDF) and then on liquidity beta.

Table 2 - specification LB (which stands for liquidity beta) shows the cross-sectional

results when we add these liquidity-beta portfolios to our cross-section of portfolios.

Comparing these results with specification (7), we see that adding liquidity-beta port-

folios hardly affects the estimates for the risk premia and expected liquidity. In par-

ticular, the liquidity risk premium still has the “wrong” sign, it even becomes slightly

more positive, and its economic impact remains very small. Even when we only use the

14When we use pre-ranking betas, we find very similar results (not reported).
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liquidity-beta portfolios for the cross-sectional estimation, we find a small and positive

coefficient for the liquidity risk premium (non-tabulated).

5.3 Asset pricing tests: Liquidity-CAPM approach

In the analysis above we focused on one liquidity risk exposure, the covariance between

portfolio returns and market-wide liquidity shocks. However, the liquidity CAPM of

Acharya and Pedersen (2005) suggests that other liquidity risk covariances may also

matter. We therefore now focus on the second asset pricing approach, as described in

section 3 (equation (7)). We focus on the extension of the liquidity CAPM in Bongaerts,

de Jong and Driessen (BDD, 2011), incorporating exposure to other risk factors.

Table 3 presents summary statistics on the different betas in this model. Most

notably, we see that the different liquidity betas have the expected sign: βrc and βcr

are negative on average: low returns coincide with higher transaction costs. Also, the

average βcc is positive, suggesting the presence of commonality in liquidity.

Turning to the cross-sectional regressions, we estimate a variety of specifications for

the BDD model in equation (7). All specifications include the equity beta, volatility

beta and the expected transaction costs. In addition, either the ’net’ beta or all or

some of its components (βrr, βrc, βcr, and βcc) are in the regression. The equity beta

and the transaction cost have positive and significant coefficients in every specification,

and the volatility risk premium is significantly negative in all specifications, in line with

the results above. The magnitudes of the equity risk premium and the transaction cost

premium are fairly stable across specifications. Together, expected liquidity and the

equity and volatility risk premia explain 73% of the cross-sectional variation in expected

returns.
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Without additional variables, the estimated equity risk premium is 3.9% per year,

and the estimated turnover rate of bonds is 0.932 per year. Adding the corporate bond

market risk premium (orthogonalized for the equity risk) in Table 4, specification (2)

gives similar results with exposure to βrr not significant.

Next we add various liquidity risk factors. In specifications (3) and (4), the exposure

of bond returns to corporate bond market transaction costs βrc is added. This factor

is significant and has a counter-intuitive positive sign, implying a negative liquidity risk

premium (as βrc is negative for every portfolio), but the economic effect is small as

the cross-sectional R2 increases only marginally. Even when we add all components of

liquidity risk with separate coefficients in specification (5) the cross-sectional R2 does

not increase substantially, and multicollinearity across the different liquidity betas leads

to “wrongly-signed” coefficients on some of the liquidity betas. When we impose the

restriction that all coefficients on the liquidity betas are the same (βother = −βrc
i −βcr

i +

βcc
i , specification (6)), we again find the “wrong” sign for this liquidity risk premium,

and again the effect is economically small. Finally, when we include the total ’net’

beta as the regressor in equation (7), βnet
i = βrr

i − βrc
i − βcr

i + βcc
i , this net beta has a

negative but insignificant coefficient (specification (7)). In sum, even when we allow for

various forms of liquidity risk exposure, we do not find that liquidity risk is priced in the

cross-section of corporate bond portfolios. The effect of expected liquidity is remarkably

constant over all specifications, though, with a coefficient around one.

5.4 Why is liquidity risk not priced?

Our results show that expected liquidity has a strong effect on corporate bond prices,

while liquidity risk exposure does not. In contrast, several articles have found evidence

that liquidity risk is priced in equity markets (Acharya and Pedersen (2005), Pastor and
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Stambaugh (2003)). To understand these empirical findings, first note that US equities

are typically much more liquid than US corporate bonds. Then consider an investor

holding both liquid (low-cost) assets (US equities) and illiquid (high-cost) assets (US

corporate bonds). There are various reasons why investors trade these assets over time,

such as rebalancing, risk-shifting, satisfying regulatory capital requirements, exogenous

liquidity needs, etc. In the presence of transaction costs, the investor then faces a trade-

off between having an optimally diversified portfolio and minimizing trading costs, see

for example Constantinides (1986).

In Appendix B we formalize such a setup using a simple two-period asset pricing

model. In this model, a mean-variance investor can invest in two assets, a low-cost

asset and high-cost asset. After one period, the investor is forced to liquidate part of

his portfolio due to an exogenous liquidity shock. If the difference between transaction

costs of the two assets is sufficiently high, it is optimal for the investor to absorb the

liquidity shock by selling only low-cost assets and avoid trading in the high-cost asset. In

equilibrium, this implies that the risk of shocks to the liquidity of the high-cost asset is

not priced. Only exposure to the liquidity risk of the low-cost asset is priced. Applying

this result to our setting, it would imply that corporate bond liquidity risk is not priced,

which is in line with our empirical findings, while exposure to equity market liquidity risk

should be priced. This is also in line with our empirical findings: in Table 2 we find that

exposure to equity market illiquidity has a significant risk premium with the expected

sign. Alternatively, if the difference between transaction costs is sufficiently small, our

simple model predicts that both assets are used to absorb the liquidity shock, although

the low-cost asset is still used relatively more. In this case, shocks to transaction costs

of both assets are priced.

This simple model can be used to generate some additional testable hypotheses.

First, the model predicts higher turnover for the low-cost asset. Second, the pricing of
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liquidity and the turnover levels may be different in normal times versus crisis periods.

To see this, consider the case where, in normal times, transaction costs on both assets are

sufficiently small so that both assets will be used for trading. In this case, liquidity risk

on both the low-cost asset (equity) and high-cost asset (corporate bonds in our case)

is priced. However, in normal times the variation in transaction costs is quite small

(see Figure 1) and hence the effect of liquidity risk on prices may be negligible. Then

consider a crisis period during which transaction costs on the high-cost asset increase

substantially so that in equilibrium this asset will not be used to absorb liquidity shocks.

The model then predicts that trading in the liquid asset actually increases when moving

from normal times to crisis periods, while trading in the illiquid asset decreases.

To support these claims, we study turnover patterns in equity and corporate bond

markets. We test two implications. First, turnover in liquid markets should be higher

than turnover in illiquid markets. Second, as markets become less liquid and/or prices

go down, turnover in the illiquid market decreases, while turnover in the liquid market

increases.

For our 2005-2008 sample period we calculate monthly turnover for each stock in

the CRSP database and each bond in our TRACE sample, by dividing monthly dollar

trading volume by the dollar value of the market capitalization (or amount issued in

bond markets). We first focus on the value-weighted average turnover levels in both

markets. We indeed find that equity market turnover is much higher than corporate

bond turnover. For stocks, the value-weighted average turnover level equals 68.3% per

quarter, while for corporate bonds the corresponding number is 6.6% per quarter.

Subsequently, we study the dynamics of turnover. Figure 4 graphs the time series

of the value-weighted mean and the median turnover across stocks and bonds, respec-

tively. We see that, as the crisis unfolds, equity turnover increases while corporate bond
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turnover goes down. To analyze these time series in more detail, we perform two sets

of regressions. First, we regress monthly changes in the value-weighted average equity

turnover on the equity market return and the change in Amihud’s (2002) ILLIQ mea-

sure. This ILLIQ measure is calculated for each stock, and we then use the change in

the value-weighted average ILLIQ across stocks as regressor. Results in Table 5 show

that a decrease in liquidity or decrease in the stock market index level imply an increase

in equity market turnover. Both effects are significant in these univariate regressions.

Given that the change in ILLIQ and the equity market return have a correlation of

−81%, a multivariate regression suffers from multicollinearity issues, as shown in Table

5. These results show that equity market turnover increases in bad, illiquid times. As

discussed above, this may be because investors are essentially forced to trade despite the

higher transaction costs.

The second regression focuses on corporate bond turnover. In this case, we perform

a panel regression of the monthly change in individual bond turnover on the change in

the market-wide level of corporate bond transaction costs, as constructed in this paper,

and the change in the average credit spread across all bonds. The results in Table 6 show

that corporate bond turnover decreases when the market becomes less liquid and when

credit spreads increase. A more subtle implication of the hypothesis put forward here is

that, within the corporate bond market, the reported decrease in turnover in bad times

should be larger for less liquid bonds. We analyze this by interacting the liquidity and

credit spread variables with a dummy that equals one when a bond is rated AAA or AA,

since these high-rated bonds are typically the most liquid among all corporate bonds,

especially in crisis periods (see Acharya, Amihud and Bharath (2010)). The results of

the turnover regression in Table 6 show that the turnover decrease in bad times is indeed

larger for low-rated (and hence less liquid) corporate bonds

In sum, these results shows that stocks have much higher turnover than corporate
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bonds, and that this difference is larger when prices go down and when markets are

overall less liquid. Hence, in line with our hypothesis, when transaction costs increase

investors prefer to trade the relatively more liquid assets and avoid trading in less liquid

assets.

6 Conclusion

This paper explores the asset pricing implications of expected liquidity and liquidity risk

for expected corporate bond returns. We measure liquidity using a Bayesian estimation

of Roll’s effective cost model. We then construct liquidity levels and liquidity innovations

for a set of corporate bond portfolios. Several asset pricing models, including Acharya

and Pedersen’s liquidity CAPM, are then estimated using the cross-section of corporate

bond portfolios. Overall, we find a strong effect of expected liquidity, while there is

little evidence that liquidity risk covariances explain expected corporate bond returns,

even during the recent financial crisis. We show that incorporating expected liquidity

effects goes a long way in explaining the high returns on high-rated corporate bonds

(the “credit spread puzzle”). We also find that equity risk and volatility risk (exposure

to VIX shocks) are priced in the cross-section of corporate bonds.
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A Gibbs sampler for the Roll model

Estimation of the coefficients of the Roll model is done by means of the Gibbs sampling

method developed by Hasbrouck (2009), combined with the repeat sales methodology.

In the Gibbs sampler, the parameters c and σ2
u and the latent series ∆Mt and r are

simulated step-by-step from their Bayesian posterior distributions. In every step, one

set of parameters or latent variables is simulated, conditional on the values of the other

parameters and latent variables from the previous simulation round. Each step then is

a relatively simple application of Bayesian regression.

Simulating q

The first step in each iteration of the Gibbs sampler is the simulation of the trade

indicators q. In Hasbrouck’s model, these can take only two values, +1 and −1. The

prior is equal probabilities, i.e. Pr[qi,tik = 1] = 1/2. After observing p, the posterior

odds are

Pr[qi,tik = 1]

Pr[qi,tik = −1]
=

f(etik |qi,tik = 1)f(eti,k+1
|qi,tik = 1)

f(etik |qi,tik = −1)f(eti,k+1
|qi,tik = −1)

where

f(etik |qi,tik = q) = φ

(
CSi,tik − CSi,ti,k−1

−
∑tik

s=ti,k−1+1 zi∆Ms − ctikq + cti,k−1
qi,ti,k−1

σ2
u

∑ti,k
s=ti,k−1+1 v

2
s

)

and

f(eti,k+1
|qi,tik = q) = φ

(
CSi,ti,k+1

− CSi,tik −
∑ti,k+1

s=tik+1 zi∆Ms − cti,k+1
qi,ti,k+1

+ ctikq

σ2
u

∑ti,k
s=ti,k−1+1 v

2
s

)

From the posterior odds ratio, the posterior probabilities for q = 1,−1 are easily calcu-

lated.
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Simulating c

The liquidity cost of a particular week w = ti,k realized in a particular trade k shows up

in two credit-spread equations:

CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms = ctikqi,tik − cti,k−1
qi,ti,k−1

+ eitik , (17)

CSi,ti,k+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms = ctik+1
qi,tik+1

− cti,kqi,ti,k + eitik+1
(18)

The posterior mean for cw is found from a linear regression of the two return equations

stacked on top of each other.

Let us first work out equation (17). If both tik and ti,k−1 fall in the same week wik,

the equation is

CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms = cwik
(qi,tik − qi,ti,k−1

) + eitik (19)

If ti,k−1 happens to be in an earlier week, we write

CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms + ĉwi,k−1
qi,ti,k−1

= cwik
qi,tik + eitik (20)

where ĉwi,k−1
is the most recent simulation of the earlier week’s transaction cost.

Working out equation (18), we get again that if both tik and ti,k+1 fall in the same

week wik, the equation is

CSi,tik+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms = cwik
(qi,tik+1

− qi,ti,k) + eitik+1
(21)
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If ti,k+1 happens to be in a later week, we write

CSi,tik+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms − ĉwi,k+1
qi,ti,k+1

= −cwik
qi,tik + eitik+1

(22)

where ĉwi,k+1
is the simulation of the subsequent week’s transaction cost from the pre-

vious iteration. Estimation of the posterior mean of cw is then done by stacking these

equations. Formally, we estimate y = Xcw + e with

y =

 ycont

yfut

 (23)

ycontik = CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms + (1− Iwik=wi,k−1
)ĉwi,k−1

qi,ti,k−1
) (24)

yfutik = CSi,tik+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms − (1− Iwik=wi,k+1
)ĉwi,k+1

qi,ti,k+1
) (25)

and

x =

 xcont

xfut

 (26)

xcontik = qi,tik − Iwik=wi,k−1
qi,ti,k−1

(27)

xfutik = −(qi,tik − Iwik=wi,k−1
qi,ti,k+1

) (28)

for all wik = w and is estimated using all data in that week. Notice that the error term

eit is a sum uitvt for t = ti,k−1 to t = ti,k and therefore heteroskedastic. So, the posterior

distribution of cw is

cw ∼ N((X ′Σ−1e X)−1X ′Σ−1e y, (X ′Σ−1e X)−1) (29)
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with Σe a diagonal matrix with elements σ2
u

∑ti,k
s=ti,k−1+1 v

2
s

Simulating ∆M

The most complex step is the simulation of the latent portfolio-level changes in credit

spreads ∆Mt. This step is absent in Hasbrouck’s model but necessary here as ∆m

consists of two components (simulating u is not necessary as it follows immediately from

the observed values of CS and the simulated values of q, c and ∆M). We draw ∆M from

a normal distribution with mean ∆̂M and variance V̂ , where ∆̂M is the OLS estimate

of a repeat sales regression

y = X∆M + e (30)

with the matrixes y and X have rows

yik = CSi,tik − CSi,ti,k−1
− ctikqi,tik + cti,k−1

qi,ti,k−1
(31)

and

xik = (0′..zikι
′..0′) (32)

for k = 1, .., K(i) and i = 1, .., N stacked, where K(i) denotes the total number of trans-

actions for bond i and N is the number of bonds allocated to the portfolio. ι is a vector

of ones with length tik−ti,k−1. The OLS estimator then is ∆̂M = (X ′X)−1X ′y with vari-

ance V̂ = (X ′X)−1X ′ΣeX(X ′X)−1. We neglect any serial correlation in credit spread

changes, and thus take the diagonal of V̂ to draw ∆M . This procedure occasionally has

’gaps’ i.e. periods with no or too few transactions. In such case, adjoining periods are

clustered and the procedure estimates the cumulative return over the clustered periods.
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B Model

In this appendix we derive a simple asset pricing model that helps to explain why

liquidity risk is not priced in the corporate bond market. The model has two assets, a

liquid asset a (equity) with low transaction costs ca and an illiquid asset b (corporate

bond) with high costs cb. We assume two investment periods, starting at time t = 0 and

t = 1 and ending at t = 2. We first study the decision problem at time t = 1. Let Na

and Nb be the positions in assets a and b, fixed at time t = 0, with prices of the assets

normalized to 1 a time 1. The investor faces a liquidity problem at t = 1 and is forced

to liquidate an amount D of his risky asset holdings. This can be done by selling either

asset a, asset b or both. The amounts sold are denoted by ∆Na ≥ 0 and ∆Nb ≥ 0,

where the amounts sold must add up to D, so that ∆Na + ∆Nb = D. Selling the assets

gives rise to transaction costs ca∆Na + cb∆Nb. The wealth after the sale is therefore

W1 = Na −∆Na +Nb −∆Nb −∆Naca −∆Nbcb. (33)

The wealth at time t = 2 then is given by

W2 = (Na −∆Na)Ra + (Nb −∆Nb)Rb −∆Naca −∆Nbcb, (34)

where Ra and Rb are the gross returns on the assets. Substituting the restriction ∆Na +

∆Nb = D we can write this as

W2 = ∆Na(Rb −Ra + cb − ca) +NaRa + (Nb −D)Rb −Dcb. (35)

Applying a mean-variance optimization, taking ca and cb as known at time t = 1, we find

the optimal amount to be sold for asset a. If there is an interior solution with ∆Na > 0
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and ∆Nb > 0, the first order condition is

(µb−µa+cb−ca)−αV ar(Rb−Ra)∆Na−αCov(NaRa+(Nb−D)Rb, Rb−Ra) = 0, (36)

which gives the optimal amount ∆Na to be sold

∆Na =
µb − µa + cb − ca
αV ar(Rb −Ra)

+
Cov(NaRa + (Nb −D)Rb, Rb −Ra)

V ar(Rb −Ra)
. (37)

This amount is increasing in the difference in transaction costs between asset b and asset

a. However, if the cost difference becomes very large, at some point the optimal Na will

exceed the amount to be liquidated D. In that case, ∆Na = D and ∆Nb = 0 will be

optimal and the wealth at time t = 1 after the sale will be

W1 = Na +Nb −D −Dca. (38)

Now we turn to the optimization problem at time t = 0. Suppose it is known in

advance to the investor that in the case of a forced liquidation of assets, there will be a

corner solution with ∆Na = D. Then we can find the t = 2 wealth as seen from t = 0 as

W2 = NaRa +NbRb −D −Dca, (39)

where Ra and Rb now denote the two-period return, i.e. the return from time 0 to time

2. A simple mean-variance problem, without leverage constraints, produces the optimal

investments

N = α−1Σ−1(µ− rf ) +DΣ−1Cov(R, ca), (40)

with N = (Na, Nb)
′ etcetera.

Now consider the equilibrium implications in a setting with several investors, which
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may differ in terms of the size of the liquidity shock D. The equilibrium depends on

which traders are forced to liquidate assets and how many end up at the corner solution

∆Na = D. In order to provide intuition for the outcome, assume that all traders are at

this corner solution, where each investor has to liquidate an amount Di. In equilibrium,

then, with common α, µ and Σ we find

N̄ = α−1Σ−1(µ− rf ) + D̄Σ−1Cov(R, ca), (41)

where D̄ is the average of the individual amounts to be liquidated. The equilibrium risk

premiums then are

µ− rf = αΣN̄ − αD̄Cov(R, ca). (42)

The risk premiums are the sum of a usual market risk premium, plus a liquidity premium

for the covariance between the asset returns and the transaction cost on the (more liquid)

asset ca. We see that there is no risk premium for correlation with the transaction cost

of the less liquid asset, cb. Notice that µb may contain a liquidity risk premium for the

covariance between the illiquid asset return Rb and the transaction costs on the liquid

asset ca, but there is no liquidity risk premium for the covariance between the illiquid

asset return Rb and its own transaction cost cb.
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Table 1: Expected returns, costs and betas
The table presents descriptive statistics of the data. The sample period is 2005 to 2008
and the portfolios are based on various sequential sorts; first, the portfolios are sorted
on rating or EDF, then each rating/EDF portfolio (except the AAA and CCC rating
portfolios) is sorted on the basis of trading activity, average bond age or issue size.
In total, there are 62 portfolios. The first three columns present the average values
across all portfolios. The second and third column present the average t-statistic and
average R2 of the first step regressions. The final two columns show the average values
for low liquidity and the high liquidity portfolios (excluding the AAA and CCC rating
portfolios). Annualized expected returns are denoted by E(r) and average transaction
costs by E(c), both in percentages. The betas capture exposure of corporate bond
returns to equity market returns (βeq), corporate bond liquidity shocks (βcost), and
shocks to VIX.

rating average t-stat R2 low liq high liq
E(r) 1.868 [4.801] 1.938 1.778
E(c) 0.833 [6.152] 0.933 0.712
univariate
βeq 0.380 [14.62] 0.498 0.358 0.399
βcost -4.194 [-8.52] 0.263 -3.805 -4.522
βvix -0.281 [-15.50] 0.526 -0.264 -0.299
multivariate
βeq 0.162 [2.46] 0.164 0.148
βcost -2.033 [-5.16] -1.752 -2.240
βvix -0.134 [-3.46] 0.618 -0.121 -0.157
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Table 3: Market and liquidity betas across corporate bond portfolios
The table presents average betas (across all portfolios) of the Bongaerts, de Jong and
Driessen (2009) model in equation (7). We have βeq = βr,eq − ζ0βc,eq and βvix = βr,vix−
ζ0β

c,vix, with ζ0 = 1.189. The other betas are defined in equations (4) and (5).

βr,eq 0.158
βr,vix -0.165
βc,eq -0.013
βc,vix 0.018
βeq 0.174
βvix -0.187
βrr 0.760
βrc -0.098
βcr -0.127
βcc 0.044
βother 0.268
βnet 1.029
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Table 4: BDD model: Cross-sectional regression estimates
This table present estimates of the Bongaerts, de Jong and Driessen (2009) model in
equation (7). The sample period is 2005 to 2008. t-statistics are given in square brackets.

model (1) (2) (3) (4) (5) (6) (7)
βeq 3.902 3.844 3.844 2.969 2.354 3.286 3.955

[6.95] [7.03] [7.03] [3.78] [3.17] [3.95] [5.94]

βvix -2.149 -2.154 -2.195 -1.500 -1.718 -1.943 -2.220
[-3.18] [-2.51] [-3.08] [-1.69] [-1.93] [-2.13] [-2.67]

E(c) 0.932 0.933 1.043 1.067 1.112 1.156 0.961
[4.36] [3.62] [3.95] [4.12] [4.85] [4.90] [3.58]

βrr -0.004 0.598 0.569 0.427
[-0.02] [3.12] [2.59] [1.84]

βrc 0.906 2.927 0.471
[1.55] [5.27] [0.92]

βcr -5.169
[-3.37]

βcc -19.02
[-4.92]

βother -1.380
[-4.07]

βnet -0.044
[-0.38]

R2 0.728 0.728 0.733 0.745 0.777 0.739 0.728
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Table 5: Equity Turnover Regressions
The table contains estimates of a linear regression of monthly changes in the value-
weighted mean of log turnover across stocks on the value weighted equity market excess
return and changes in the value-weighted ILLIQ across stocks, corrected for inflation.
Data runs from Jan 2005 to Dec 2008. t-statistics are in brackets.

model (1) (2) (3)
d(Equity market illiquidity) 0.140 -0.004

[1.93] [-0.03]

Equity market return -1.725 -1.755
[-2.51] [-1.53]

Constant 0.001 0.001 0.001
[0.32] [0.33] [0.34]

N 47 47 47

R2 0.076 0.123 0.123
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Table 6: Corporate bond turnover regressions
The table contains estimates of a linear panel regression of quarterly changes in indi-
vidual bond log turnover on changes of our market-wide liquidity cost measure for the
corporate bond market and changes in mean credit spreads. We also include interac-
tions between a high quality dummy (equal to one for bonds rated AAA or AA) and the
change in cost index or mean credit spread respectively. Bond-specific fixed effects are
included and standard errors are clustered by quarter. Sample period is from 2005Q1 to
2008Q4 and contains data on the same sample of bonds as is used in the previous tables.
Bond turnover is winsorized at 5% top and 5% bottom. t-statistics are in brackets.

model (1) (2) (3) (4) (5)

d(Corporate bond -0.149*** -0.118*** -0.144*** -0.119***
market illiquidity) [-7.29] [-7.62] [-6.63] [-7.88]

d(Credit spread) -7.844** -3.440** -3.526** -5.327**
[-2.45] [-2.31] [-2.36] [-2.67]

d(Corporate bond 0.0841**
market illiquidity) [2.71]
∗HQdummy

d(Credit spread) 5.965**
∗HQdummy [2.46]

HQdummy (AAA/AA) 0.0173 0.00632
[0.31] [0.11]

Constant -0.0371* -0.0279 -0.0275 -0.0326 -0.0295
[-1.93] [-1.45] [-1.42] [-1.32] [-1.20]

N 113776 113776 113776 113776 113776
R2 0.049 0.048 0.050 0.050 0.050
N clust 15 15 15 15 15
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Figure 1: Time series of expected bond returns and transaction costs
The figure shows weekly time series of the expected corporate bond returns (top line)
and transaction costs obtained by the Gibbs sampler (bottom line), averaged across all
portfolios. The sample period is 2005 to 2008.
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Figure 2: Risk-factor model: Fit of expected returns
The figure shows the fitted values of the expected bond returns, obtained by multiplying
the estimated coefficients in Table 2, specification (7) with the estimated expected cost
and the estimated betas. Alpha is the pricing error as defined in equation (2). The fit is
presented for portfolios across rating categories / EDFs and liquidity proxies, averaged
across liquidity proxies. For example, “AA-hi” refers to the high-liquidity AA portfolios,
while “AA-lo” refers to the low-liquidity AA portfolios.
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Figure 4: Turnover in equity and corporate bond markets
The figure shows quarterly turnover in the equity and corporate bond market. For the
equity market, the time series of both the value-weighted mean and median of quarterly
turnover across all CRSP stocks is shown. Similarly, for corporate bonds the time series
of the value-weighted mean and median of quarterly bond turnover across all TRACE
bonds is shown.

52


	Introduction
	Literature
	Pricing models
	Measuring bond returns and liquidity
	Data filters and portfolio selection
	The Roll model for bond returns
	Validation of the liquidity estimates
	Time series model for liquidity
	Expected return estimates

	Empirical results
	Expected returns, transaction costs and betas
	Asset pricing tests: Risk-factor approach
	Benchmark results
	Sorting on liquidity betas

	Asset pricing tests: Liquidity-CAPM approach
	Why is liquidity risk not priced?

	Conclusion
	Gibbs sampler for the Roll model
	Model

