
The Swaption Cube

Abstract

We use a comprehensive database of inter-dealer quotes to conduct the first empirical analysis

of the swaption cube. Using a model independent approach, we establish a set of stylized

facts regarding the cross-sectional and time-series variation in conditional volatility and

skewness of the swap rate distributions implied by the swaption cube. We then develop and

estimate a dynamic term structure model that is consistent with these stylized facts and use

it to infer volatility and skewness of the risk-neutral and physical swap rate distributions.

Finally, we investigate the fundamental drivers of these distributions. In particular, we find

that volatility, volatility risk premia, skewness, and skewness risk premia are significantly

related to the characteristics of agents’ belief distributions for the macro-economy, with GDP

beliefs being the most important factor in the USD market and inflation beliefs being the

most important factor in the EUR market. This is consistent with differences in monetary

policy objectives in the two markets.



1 Introduction

In this paper, we conduct an extensive empirical analysis of the market for interest rate

swaptions – options to enter into interest rate swaps – using a novel data set. Understanding

the pricing of swaptions is important for several reasons. By some measures (such as the

notional amount of outstanding contracts) the swaption market is the world’s largest options

market. Furthermore, many standard fixed income securities, such as fixed rate mortgage-

backed securities and callable agency securities, imbed swaption-like options, and swaptions

are used to hedge and risk-manage these securities in addition to many exotic interest rate

derivatives and structured products. Moreover, many large corporations are active in the

swaption market either directly or indirectly (through the issuance and swapping of callable

debt), and a better understanding of the pricing of swaptions may, therefore, have implications

for corporate finance decisions.1

The importance of the swaption market has spurred a number of empirical studies over the

past decade.2 Our paper differs from these in two important ways. First, all existing studies

are limited to only using data on at-the-money (ATM) swaptions. In contrast, we analyze a

proprietary data set with extensive information about non-ATM swaptions, which sheds new

light on the swaption market. Second, existing studies are mostly concerned with the pricing

and hedging of swaptions using reduced-form models. Although we also utilize a reduced-form

dynamic term structure model, a key objective of the paper is to understand the fundamental

drivers of prices and risk premia in the swaption market.

The paper takes advantage of a unique data set from the largest inter-dealer broker in

the interest rate derivatives market, which records prices of swaptions along three dimensions:

the maturities of the underlying swaps (the swap tenors), the expiries of the options, and the

option strikes. This three-dimensional grid of prices is known, among market participants,

as the swaption cube. The range along all three dimensions is wide with swap tenors from 2

years to 30 years, option expiries from 1 month to 10 years, and strike intervals up to 800 basis

points. The data covers more than eight years from 2001 to 2010, and spans two recessions and

1A 2009 survey by the International Swaps and Derivatives Association found that 88.3 percent of the

Fortune Global 500 companies use interest rate derivatives, such as swaps and swaptions, to manage interest

rate risk.

2See Longstaff, Santa-Clara, and Schwartz (2001a), Longstaff, Santa-Clara, and Schwartz (2001b), Driessen,

Klaassen, and Melenberg (2003), Fan, Gupta, and Ritchken (2003), de Jong, Driessen, and Pelsser (2004),

Han (2007), Joslin (2007), Duarte (2008), Trolle and Schwartz (2009), and Carr, Garbaix, and Wu (2009).
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the financial crisis. Moreover, the data contains both USD and EUR denominated swaptions –

by far the most liquid currencies – allowing us to ascertain the robustness of our results across

different markets.

We first analyze the swaption cube from a model independent perspective. For a given swap

maturity and option expiry, we compute conditional moments (under the appropriate pricing

measure3) of the swap rate distribution at a time horizon equal to the option expiry. This is

done by suitably integrating over swaptions with different strikes. For instance, supposing we

consider the 1-year option on the 10-year swap, then the strike-dimension of swaption prices

gives us conditional moments of the 10-year swap rate distribution in 1-year’s time. Since

we observe options with a wide range of expiries, for each swap maturity we obtain a term

structure of conditional swap rate moments.

We investigate how conditional moments vary with option expiry, swap maturity, and across

time. Results regarding conditional volatility are largely consistent with existing studies using

ATM implied swaption volatilities, although we here compute conditional volatility by taking

the entire implied volatility smile into account. It is for the higher-order moments that we

obtain a series of new stylized facts regarding the cross-sectional and time-series variation.

Conditional skewness is mostly positive on average. At a given option expiry, conditional

skewness, on average, decreases with swap maturity and is negative in some cases. For a given

swap maturity, conditional skewness, on average, increases with option expiry. Furthermore,

conditional skewness exhibits significant variation over time to the extent that the sign of

conditional skewness sometimes changes. However, changes in conditional skewness are largely

unrelated to changes in swap rates and volatility and show strong common variation across

swap maturities and option expiries, strongly indicating that skewness risk is largely orthogonal

to term structure and volatility risks. Conditional swap rate distributions always have fat tails.

However, conditional kurtosis exhibits less systematic variation than is the case for conditional

skewness. For this reason, we mainly focus on conditional volatility and skewness in the paper.

Motivated by the model-independent analysis, we develop a dynamic model of the term

structure of swap rates. The model features two volatility factors, which may be partially

spanned by the term structure, and swaptions can be priced with a fast and accurate Fourier-

based pricing formula. By specifying shocks to the term structure judiciously (a specification

that encompasses “level”, “slope”, and “curvature” shocks), the model reduces to a particular

3In the case of swaptions, the appropriate pricing measure is not the risk-neutral measure, but rather the

annuity measure, see the discussion in Section 3.
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case of an affine term structure model.4 The model is estimated by maximum-likelihood on

a panel data set, which includes all the swaptions and underlying swap rates in the swaption

cubes. We show that a parsimonious specification with three term structure factors and two

volatility factors, which only differ from each other in their correlations with the term structure

factors, is able to capture most of the cross-sectional and time-series variation in conditional

volatility and skewness of the swap rate distributions under the pricing measure.

The main purpose of imposing a dynamic term structure model is to infer the conditional

swap rate distributions under the risk-neutral measure as well as the physical measure. This

allows us to study the pricing of risk in the swaption market. We show that the risk-neutral

swap rate distributions on average exhibit higher volatility and are more skewed towards higher

rates than the swap rate distributions under the physical measure.

Ultimately, we are interested in understanding the fundamental drivers of the conditional

swap rate distributions – in particular the effects of macro-economic uncertainty. To quantify

macro-economic uncertainty, we infer agents’ perceived probability distributions (which we call

agents’ belief distributions) for 1-year ahead real GDP growth and inflation from the survey of

professional forecasters conducted in both the US and the Eurozone.5 We then regress volatility

and skewness of the physical swap rate distributions as well as volatility risk premia (defined as

the differences between physical and risk-neutral volatility) and skewness risk premia (defined

as the differences between physical and risk-neutral skewness) on the dispersion and skewness of

agents’ belief distributions for future real GDP growth and inflation. We also control for other

factors that may have an effect on swap rate distributions, including volatility and skewness

4In addition to facilitating estimation, the affine representation also facilitates pricing of complex interest

rate derivatives by simulation. A large class of popular derivatives known as callable LIBOR exotics (including

Bermudan swaptions, callable capped floaters, callable range accruals, and target redemption notes) are priced

by simulation, often using the LSM scheme of Longstaff and Schwartz (2001) to address early-exercise features.

In the work-horse model in the financial industry, the LIBOR market model, simulation is time-consuming

since each forward LIBOR rate must be simulated by itself. To price a typical 30-year structure in the USD

market, 120 forward LIBOR rates (with complicated drift conditions) must be simulated. In contrast, the model

considered in this paper has a limited set of state variables (with simple affine dynamics) making it much faster

to obtain prices and hedge-ratios.

5Our focus on expectations about future growth and inflation, as opposed to their current values, is consistent

with an influential paper by Clarida, Gali, and Gertler (2000), which finds that the Federal Reserve adjusts

monetary policy in response to deviations in expected output and inflation from their respective target levels

(i.e. it follows a so-called forward-looking Taylor rule).
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of the equity index return distribution, market-wide liquidity, and refinancing activity.6

In the USD market, we find that dispersion of agents’ belief distribution for future real

GDP growth has a significantly positive effect on volatility of the physical swap rate distri-

butions and a significantly negative impact on volatility risk premia. This is consistent with

equilibrium models, primarily developed for equity derivatives, in which an increase in uncer-

tainty and/or disagreement among agents about fundamentals increases both risk-neutral and

physical volatility as well as the wedge between the two.7 Furthermore, skewness of agents’

GDP beliefs has a significantly positive effect on skewness of the physical swap rate distribu-

tions. Interestingly, the swap rate distributions are less related to the characteristics of agents’

inflation beliefs.

In contrast, in the EUR market, the swap rate distributions are more related to the charac-

teristics of agents’ belief distribution for future inflation than for future real GDP growth. For

instance, dispersion of agents’ inflation beliefs has a significantly positive effect on volatility

of the physical swap rate distributions, and a significantly negative impact on volatility risk

premia. Furthermore, skewness of agents’ inflation beliefs has a significantly positive effect

on skewness of the physical swap rate distributions, and a significantly negative impact on

skewness risk premia – the latter possibly reflecting agents’ dislike for high inflation states.

One likely reason for these differences between the two markets is that the primary policy goal

of the European Central Bank is to maintain price stability, whereas the Federal Reserve has a

dual mandate of maximum employment and price stability, leading it to place relatively more

emphasis on expectations for real GDP growth when settings interest rates.

We also find that various dimensions of the swap rate distributions are related to the char-

acteristics of the equity index return distribution as well as market-wide liquidity. Refinancing

activity appears to play a more modest role than previous papers have suggested, which may,

in part, be due to the Federal Reserve’s massive involvement in the MBS market in the latter

part of the sample period. Since it does not engage in convexity hedging, this reduces the

6In an extensive study, Duarte (2008) finds that refinancing activity has an impact on the pricing of ATM

swaptions.

7This is, for instance, the case in long run risk models, where agents have preferences for early resolution of

uncertainty, and macro-economic uncertainty is stochastic (see, e.g., Eraker and Shaliastovich (2008), Bollerslev,

Tauchen, and Zhou (2009), Bollerslev, Sizova, and Tauchen (2009), Drechsler and Yaron (2009), and Shalias-

tovich (2009)), in models where agents have incomplete information and face fundamentals subject to regime

switches (see, e.g., David and Veronesi (2002, 2009)), or in models where agents have incomplete information

and heterogeneous beliefs (see, e.g., Buraschi and Jiltsov (2006) and Buraschi, Trojani, and Vedolin (2009)).
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effect of refinancing activity on the swaption market.

The literature on interest rate derivatives is vast. A related set of papers analyze volatility

smiles in the market for interest rate caps/floors.8 That market is a subset of the swaption

market, since a cap is a basket of caplets, which are options on LIBOR rates of a particular

maturity. The swaption cube data set is much more extensive, since the underlying swaps

have a wide range of maturities.9 Compared to those studies that analyze ATM swaptions

and those that analyze cap/floor volatility smiles, we establish a series of new stylized facts

about swap rate distributions, develop a dynamic term structure model that matches these

stylized facts, and provide a detailed analysis of the fundamental drivers of the swap rate

distributions.

Our paper is also related to a growing literature linking the term structure of interest rates

to macro factors.10 This literature is mainly based on Gaussian models, and, consequently,

primarily concerns itself with the determinants of the conditional mean of interest rates. We

complement this literature by studying the determinants of the conditional volatility and

skewness of interest rates, which are critical for derivatives prices.11

The rest of the paper is organized as follows: Section 2 describes the swaption cube data.

Section 3 uses a model independent approach to establish several stylized facts about the swap

rate distributions under the pricing measure. Section 4 describes and evaluates a dynamic

term structure model for swap rates and infers the the swap rate distributions under the risk-

neutral and physical measures. Section 5 investigates the economic determinants of the swap

rate distributions. Section 6 considers a variety of robustness checks. Section 7 concludes, and

two appendices contain additional information.

8See Gupta and Subrahmanyam (2005), Li and Zhao (2006), Jarrow, Li, and Zhao (2007), Deuskar, Gupta,

and Subrahmanyam (2008), Trolle and Schwartz (2009), Li and Zhao (2009), and Deuskar, Gupta, and Sub-

rahmanyam (2010).

9One drawback of the cap/floor market is that caplet prices are not quoted directly. Instead, one needs to

strip caplet prices from quoted caps prices, which is a non-trivial exercise.

10See, among others, Ang and Piazzesi (2003), Gallmeyer, Hollifield, and Zin (2005), Ang, Piazzesi, and

Wei (2006), Smith and Taylor (2009), Bekaert, Cho, and Moreno (2010), Bikbov and Chernov (2010),

Chun (2010), and Joslin, Priebsch, and Singleton (2010).

11In contemporaneous work, Cieslak and Povala (2010) find that macro and liquidity factors are important

determinants of Treasury market volatility. They study neither volatility risk premia or higher-order moments

of interest rates.
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2 The swaption cube data

A standard European swaption is an option to enter into a fixed versus floating forward starting

interest rate swap at a predetermined rate on the fixed leg. A receiver swaption gives the right

to enter a swap, receiving the fixed leg and paying the floating leg, while a payer swaption gives

the right to enter a swap, paying the fixed leg and receiving the floating leg.12 For instance,

a two-year into ten-year, five percent payer swaption is the option to pay a fixed rate of five

percent on a ten-year swap, starting two years from today.

The swaption cube is an object that shows how swaption prices vary along three dimensions:

the maturities of the underlying swaps, the expiries of the options, and the option strikes. In

the swaption cube data provided to us, prices are quoted for 5 different swap maturities (2, 5,

10, 20, and 30 years), 8 different option expiries (1, 3, 6, 9 months and 1, 2, 5, and 10 years),

and up to 15 different strikes given by fixed distances to the forward swap rate (± 400, ± 300,

± 200, ± 150, ± 100, ± 50, ± 25, and 0 basis points).13 Hence, the swaption cube gives an

extremely detailed view of the swaption market.

Swaptions trade over the counter (OTC) and typically via inter-dealer brokers. These act

as intermediaries; they facilitate price discovery and transparency by communicating dealer

interests and transactions, enhance liquidity, and allow financial institutions anonymity in

terms of their trading activities. Our swaption cube data is from ICAP plc., which is the

largest inter-dealer broker in the interest rate derivatives market, and as such provides the

most accurate quotations.

We consider swaptions denominated in both USD and EUR, which are by far the most

liquid markets.14 Although the data is available daily, we use weekly (Wednesday) data to

12USD swaps exchange a fixed rate for a floating 3-month LIBOR rate, with fixed-leg payments made semi-

annually, and floating-leg payments made quarterly. EUR swaps exchange a fixed rate for a floating 6-month

EURIBOR rate, with fixed-leg payments made annually, and floating-leg payments made semi-annually. In

both currencies, the daycount convention is 30/360 on the fixed leg, and Actual/360 on the floating leg.

13Prices are for out-of-the-money (OTM) swaptions, i.e. receiver swaptions, when the strike is less than the

forward swap rate, and payer swaptions, when the strike is higher than the forward swap rate.

14To measure market concentration in each segment of the global OTC derivatives market, the Bank for

International Settlements (BIS) computes a Herfindahl index defined as the sum of the squares of the market

shares of each individual institution. The index ranges between 0 and 1, with its value increasing in market

concentration. For OTC interest rate options (for which swaptions constitute the largest component) denom-

inated in USD and EUR, the BIS computed a value of 0.0912 and 0.0638, respectively, as of December 2009;

see, BIS (2010). As such, both markets are very competitive.
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avoid potential weekday effects, and to ease the computational burden of the estimation. For

the USD market, the data is from December 19, 2001 to January 27, 2010 (419 weeks), while

for the EUR market, the data is from June 6, 2001 to January 27, 2010 (449 weeks). We

apply various filters to the data; we eliminate obvious mistakes in the quotations and only

consider options for which the price is larger than USD (EUR) 100 in case of a swap notional

of USD (EUR) 1,000,000 (since according to market sources, quotes for extremely deep OTM

swaptions are less reliable).15 In total, we use 172,658 quotes in the USD market, and 172,500

quotes in the EUR market for our analyses.

While swaptions are quoted in terms prices, it is often more convenient to represent prices

in terms of implied volatilities – either log-normal or normal.16 Most market participants think

in terms of normal implied volatilities, as these are more uniform across the swaption grid and

more stable over time than log-normal implied volatilities. Therefore, in this paper, implied

volatilities always refer to the normal type, unless otherwise stated.

3 A model independent analysis of the swaption cube

In this section, we analyze the swaption cube from a model independent perspective. For a

given option expiry and swap maturity, conditional moments of the swap rate distribution

(under the appropriate pricing measure) at a time horizon equal to the option expiry can be

inferred from the implied volatility smile.17 We analyze how conditional moments vary with

option expiry, swap maturity, and across time.

15This implies that for a given underlying swap maturity, the range of strikes will increase with option expiry.

For a given swap maturity and option expiry, the range of strikes will vary over time with the level of volatility

and the level of the underlying forward swap rate (swaptions with negative strikes are obviously not quoted).

16The log-normal (or percentage) implied volatility is the volatility parameter that, plugged into the log-

normal (or Black (1976)) pricing formula, matches a given price. The normal (or absolute or basis point)

implied volatility is the volatility parameter that, plugged into the normal pricing formula, matches a given

price.

17In principle, using the insight from Breeden and Litzenberger (1978), we could obtain the entire conditional

density, rather than just conditional moments, of the swap rate from the implied volatility smile. Beber and

Brandt (2006) and Li and Zhao (2009) study option-implied densities of Treasury futures prices and LIBOR

rates, respectively. In practice, however, it is a non-trivial matter to obtain the conditional density from a finite

number of option prices, and results may be quite sensitive to the choice of numerical scheme. In contrast,

conditional moments can be recovered in a robust fashion.
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3.1 Conditional moments of the swap rate distribution

Consider a fixed versus floating interest rate swap for the period Tm to Tn with a fixed rate

of K. At every time Tj in a pre-specified set of dates Tm+1, ..., Tn, the fixed leg pays τj−1K,

where τj−1 is the year-fraction between times Tj−1 and Tj . The value of the swap at time

t < Tm (assuming a notional of one) is given by18

Vm,n(t) = P (t, Tm) − P (t, Tn) −KAm,n(t), (1)

where

Am,n(t) =
n∑

j=m+1

τj−1P (t, Tj), (2)

and P (t, T ) denotes the time-t price of a zero-coupon bond maturing at time T . The time-t

forward swap rate, Sm,n(t), is the rate on the fixed leg that makes the present value of the

swap equal to zero and is given by

Sm,n(t) =
P (t, Tm) − P (t, Tn)

Am,n(t)
. (3)

The forward swap rate becomes the spot swap rate at time Tm.

A payer swaption is an option to enter into an interest rate swap, paying the fixed leg at

a predetermined rate and receiving the floating leg. Let Pm,n(t,K) denote the time-t value of

a European payer swaption expiring at Tm with strike K on a swap for the period Tm to Tn.

18Here, and throughout the paper, we are implicitly assuming that LIBOR is the proper rate for discounting

swap cash flows. In reality, inter-dealer swap and swaption contracts are virtually always collateralized, and

cash flows should, in principle, be discounted using a risk-free rate. A number of recent papers have analyzed

this issue (see, e.g., Fujii, Shimada, and Takahashi (2009), Mercurio (2009), Filipovic and Trolle (2010) and,

for a more general treatment, Piterbarg (2010)), and it is generally agreed that one should use discount factors

inferred from overnight index swaps (OIS), which are swaps that exchange a compounded overnight rate against

a fixed rate. In principle, all formulas in the paper could be extended to take into account this extra complication.

In practice, however, this extension is only possible for the very last part of the sample, where long-maturity

OIS were actively traded. Consequently, and consistent with most papers on swaps and swaptions, we discount

swap cash flows at LIBOR.
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At expiration, the swaption has a payoff of19

Vm,n(Tm)+ = (1 − P (Tm, Tn) −KAm,n(Tm))+

= Am,n(Tm) (Sm,n(Tm) −K)+ . (4)

At time t < Tm, its price is given by

Pm,n(t,K) = EQ
t

[
e−

∫ Tm
t

r(s)dsAm,n(Tm) (Sm,n(Tm) −K)+
]

= Am,n(t)EA
t

[
(Sm,n(Tm) −K)+

]
, (5)

where Q denotes expectation under the risk-neutral measure, and A denotes expectation under

the annuity measure associated with using Am,n(t) as numeraire.20 The corresponding receiver

swaption is denoted by Rm,n(t,K), and has a time-t price of

Rm,n(t,K) = Am,n(t)EA
t

[
(K − Sm,n(Tm))+

]
. (6)

From (5) and (6) it is apparent that a receiver swaption can be viewed as a put option on a

swap rate, whereas a payer swaption can be viewed as a call option on a swap rate.

Using the insights from Bakshi and Madan (2000), Carr and Madan (2001), and Bakshi,

Kapadia, and Madan (2003) it follows that for any fixed Z, we can write any twice continuously

differentiable function of Sm,n(Tm), g(Sm,n(Tm)), as

g(Sm,n(Tm)) = g(Z) + g′(Z)(Sm,n(Tm) − Z) +

∫ ∞

Z
g′′(K)(Sm,n(Tm) −K)+dK

+

∫ Z

0
g′′(K)(K − Sm,n(Tm))+dK. (7)

Taking expectations under the annuity measure and setting Z = Sm,n(t), we obtain an expres-

19EUR swaptions are typically cash-settled and have a payoff given by

(Sm,n(Tm) − K)+
n∑

j=m+1

τj−1

1

(1 + Sm,n(Tm))τm,j
,

where τm,j is the year-fraction between times Tm and Tj . The advantage of using this formula, rather than

(4) is that counterparties only have to agree upon a single swap rate, rather than a complete set of discount

factors, to compute the cash settlement value. In practice, the difference between the two payoff formulas is

very small, and in the paper we use (4) also for EUR swaptions; see, e.g., Andersen and Piterbarg (2010) for

further details.

20For a discussion of the annuity measure; see, e.g., Jamshidian (1997). Note that the annuity measure

changes with m and n. To lighten notation, we have suppressed this dependence.
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sion in terms of prices of out-of-the-money receiver and payer swaptions

EA
t [g(Sm,n(Tm))] = g(Sm,n(t)) +

1

Am,n(t)

( ∫ ∞

Sm,n(t)
g′′(K)Pm,n(t,K)dK

+

∫ Sm,n(t)

0
g′′(K)Rm,n(t,K)dK

)
. (8)

We can use this result to compute conditional moments of the swap rate distribution at a

time horizon equal to the expiry of the option. First, by construction of the annuity measure,

the conditional mean of the future swap rate distribution is simply the current forward swap

rate:

µt ≡ EA
t [Sm,n(Tm)] = Sm,n(t). (9)

Then, using (8), we get the following expressions for conditional variance, skewness, and

kurtosis of the future swap rate distribution:

VarA
t (Sm,n(Tm)) = EA

t

[
(Sm,n(Tm) − µt)

2
]

=

2

Am,n(t)

(∫ ∞

Sm,n(t)
Pm,n(t,K)dK +

∫ Sm,n(t)

0
Rm,n(t,K)dK

)
(10)

SkewA
t (Sm,n(Tm)) =

EA
t

[
(Sm,n(Tm) − µt)

3
]

VarA
t (Sm,n(t, Tm))3/2

=

6
Am,n(t)

( ∫∞
Sm,n(t) (K − Sm,n(t))Pm,n(t,K)dK +

∫ Sm,n(t)
0 (K − Sm,n(t))Rm,n(t,K)dK

)

VarA
t (Sm,n(t, Tm))3/2

(11)

KurtA
t (Sm,n(Tm)) =

EA
t

[
(Sm,n(Tm) − µt)

4
]

VarA
t (Sm,n(t, Tm))2

=

12
Am,n(t)

( ∫∞
Sm,n(t) (K − Sm,n(t))2 Pm,n(t,K)dK +

∫ Sm,n(t)
0 (K − Sm,n(t))2 Rm,n(t,K)dK

)

VarA
t (Sm,n(t, Tm))2

(12)

As discussed in the previous section, swaptions are only available for a finite set of strikes,

while the formulas presume the existence of a continuum of strikes. Swaption prices corre-

sponding to the required strikes in the scheme used for numerical integration are obtained by,

first, linearly interpolating between the available normal implied volatilities, and then con-

verting from implied volatilities to prices. For strikes below the lowest available strike, we use

the implied volatility at the lowest strike. Similarly, for strikes above the highest available

strike, we use the implied volatility at the highest strike. The approximation error caused by
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the extrapolation of implied volatilities is very small, since swaption prices are very low in the

regions of strikes where extrapolation is necessary.21

3.2 Results

We now investigate how conditional moments vary with option expiry, swap maturity, and

across time. Table 1 displays results for conditional volatility (the annualized standard de-

viation, measured in basis points) of the swap rate distribution for different swap maturities

(tenors) and at different option expiries. It reports the sample means and, in parentheses, the

sample standard deviations. At short option expiries, conditional volatility is, on average, a

hump-shaped function of swap maturity, with the intermediate (5-year) segment of the swap

term structure being the most volatile. For the shortest (2-year) swap maturity, conditional

swap rate volatility is, on average, a hump-shaped function of option expiry, while for the

longer swap maturities, it declines with option expiry. This pattern is also found in earlier

studies that look at implied normal or log-normal ATM volatilities, without taking the implied

volatility smile into account. It is consistent with a model in which innovations to the term

structure of forward rates exhibits a hump-shape.

Conditional volatility exhibits significant variation over time. For instance, the conditional

1-year ahead distribution of the USD 10-year swap rate has a volatility that varies between

67 bp and 177 bp through the sample period (see solid line in Figure 1, Panel A). For a

given swap maturity, the variation in volatility declines with option expiry, consistent with a

model exhibiting mean-reverting stochastic volatility. Moreover, an unreported analysis shows

that changes in volatility are largely unrelated to changes in the term structure. This is the

“unspanned stochastic volatility” phenomenon, which is the subject of a number of recent

papers.22 A principal component (PC) analysis reveals large common variation in conditional

volatility across the swaption matrix. For instance, in the USD market, the first PC explains 84

percent of the variation (while the second and third PCs explain 9 and 5 percent, respectively).

21We have experimented with different interpolation/extrapolation schemes and find that the results are very

robust to the choice of scheme. The only exception is for swaptions with 10-year option expiries in times of high

volatility, where swaptions outside of the available strike range do have some (small) values making the results

slightly dependent on the extrapolation approach. The integrals are evaluated with the trapezoid scheme using

999 integration points for each integral. The first integral in each expression is truncated at Sm,n(t) + 0.10.

22This line of research was initiated by Collin-Dufresne and Goldstein (2002) and further evidence has been

provided by Heidari and Wu (2003), Andersen and Benzoni (2010), Li and Zhao (2006, 2009), Trolle and

Schwartz (2009), and Collin-Dufresne, Goldstein, and Jones (2009), among others.

11



Table 2 displays results for conditional skewness of the swap rate distribution for different

swap maturities (tenors) and at different option expiries. Like the previous table, it reports

the sample means and, in parentheses, the sample standard deviations. Conditional skewness

tends to be positive on average, implying that for most points on the swaption matrix, OTM

payer swaptions are more expensive than equivalently OTM receiver swaptions. At any given

option expiry, conditional skewness, on average, declines with swap maturity to the point,

where it is negative at the longest tenors – particularly in the EUR market. At the same time,

for a given swap maturity, conditional skewness is an increasing and concave function of option

expiry. If innovations to swap rates were independent and identically distributed, conditional

skewness would decrease with option expiry by being proportional to the reciprocal of the

square-root of the option expiry. Instead, the observed term structure of conditional skewness

is consistent with volatility following a stochastic process with low to moderate degrees of

mean reversion.23

Like conditional volatility, conditional skewness also exhibits significant variation over time.

The variation is such that the sign of conditional skewness often changes. For example, skew-

ness of the conditional 1-year ahead distribution of the USD 10-year swap rate varies between

-0.38 and 0.87 through the sample period (see solid line in Figure 1, Panel B). A principal com-

ponent analysis shows that conditional skewness also exhibits large common variation across

the swaption matrix. In the case of the USD market, the first PC explains 85 percent of the

variation (while the second and third PCs explain 7 and 2 percent, respectively).

Similar to volatility being only partially spanned by the term structure, an interesting

question is the extent to which skewness is spanned by the term structure and/or volatility;

that is, the extent to which “skewness risk” represents a separate source of risk. To investigate

this issue, we initially extract the main PCs driving weekly changes in forward swap rates and

the main PCs driving weekly changes in the conditional variance of the swap rate distributions.

We use all the PCs explaining more than one percent of the variation ensuring that they

summarize virtually all of the information in interest rates and volatility. Next, for each

point on the swaption matrix, we regress changes in the conditional skewness of the swap

23The term structure of conditional skewness (and kurtosis) in stochastic volatility models is explored in Das

and Sundaram (1999). In the Heston (1993) model, where variance follows a square-root process, the term

structure of conditional skewness exhibits a hump shape. For parameter values often encountered in practice,

the point of maximum conditional skewness occurs years into the future, implying that the term structure will

often be increasing and concave over the set of option maturities actually observed.
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rate distribution on the interest rate and volatility PCs (we also include the squared PCs

in the regressions in an attempt to take non-linearities into account). The R2s, which are

reported in Table 3, are relatively small; in the USD market, ranging from 0.03 to 0.30 with

an average of 0.14. Then, we factor analyze the covariance matrix of the 40 time series of

regression residuals. The PCs of the residuals are, by construction, independent of those of

interest rates and volatility. There is large common variation in the regression residuals, with

the first PC explaining 78 percent of the variation in the USD market. Taken together, this

strongly indicates that there is systematic variation in skewness which is largely independent

of variation in interest rates and volatility.24

Due to space constraints, we only briefly summarize the results for conditional kurtosis

of the swap rate distributions. The swap rate distributions are always leptokurtic. For a

given swap maturity, the term structure of conditional kurtosis is hump-shaped with a peak

between 5 and 10 years – again consistent with a stochastic volatility model with low to

moderate degrees of mean reversion. While conditional kurtosis also exhibits some variation

over time, it is less systematic across the swaption matrix. For instance, in the case of the

USD market, the first PC explains only 42 percent of the variation. For this reason, in the

rest of the paper, we will mainly focus on conditional volatility and skewness.

4 A dynamic term structure model for swap rates

In this section, we propose and estimate a dynamic term structure model, which is capable of

matching the cross-sectional and time-series variation in the conditional moments of the swap

rate distributions under the annuity measure. We then use the model to infer the conditional

moments under the risk-neutral and physical measures.

24If the low R2s in Table 3 were simply due to noisy data, we would not expect to find much common variation

in the residuals. We have run several other regressions to check the robustness of the result. For instance, to

take potential time-variation in the relationship between rates, volatility, and skewness into account, we also

perform the analysis using a rolling window of 52 observations. That is, for each window we extract the first

three PCs of rates and volatility, run the regressions, and factor analyze the residuals. The average R2s are

now somewhat larger, but we continue to find large common variation in the regression residuals.
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4.1 The model

We first set up a general model under the risk-neutral measure and then find its dynamics

under the physical and annuity measures. Subsequently, we discuss model features and the

specifications that we estimate.

4.1.1 Dynamics under the risk-neutral measure

Let P (t, T ) denote the time-t price of a zero-coupon bond maturing at time T . We assume

the following general specification for the dynamics of zero-coupon bond prices

dP (t, T )

P (t, T )
= r(t)dt +

N∑

i=1

σP,i(t, T )
(√

v1(t)dW
Q
i (t) +

√
v2(t)dW

Q

i (t)
)

(13)

dv1(t) = (η1 − κ1v1(t) − κ12v2(t))dt + σv1

√
v1(t)dZ

Q(t) (14)

dv2(t) = (η2 − κ21v1(t) − κ2v2(t))dt + σv2

√
v2(t)dZ

Q
(t), (15)

where WQ
i (t) and W

Q

i (t), i = 1, ..., N , and ZQ(t) and Z
Q
(t) denote Wiener processes under

the risk-neutral measure. We allow for correlations between ZQ(t) and WQ
i (t), i = 1, ..., N ,

with correlations denoted by ρi. Similarly, we allow for correlations between Z
Q
(t) and W

Q

i (t),

i = 1, ..., N , and denote these correlations by ρi. This is the most general correlation structure

that preserves the tractability of the model.

Now, applying Ito’s Lemma to (3) gives the dynamics of the forward swap rate under Q

dSm,n(t) =

(
−

N∑

i=1

σS,i(t, Tm, Tn)σA,i(t, Tm, Tn)(v1(t) + v2(t))

)
dt +

N∑

i=1

σS,i(t, Tm, Tn)
(√

v1(t)dW
Q
i (t) +

√
v2(t)dW

Q

i (t)
)
, (16)

where

σS,i(t, Tm, Tn) =

n∑

j=m

ζj(t)σP,i(t, Tj) (17)

σA,i(t, Tm, Tn) =
n∑

j=m+1

χj(t)σP,i(t, Tj), (18)

and ζj(t) and χj(t) are (stochastic) weights that are given in Appendix A.

4.1.2 Dynamics under the physical measure

The dynamics under the physical probability measure P is obtained by specifying the market

prices of risk that link the Wiener processes under Q and P. We apply the following relatively
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standard specifications

dW P
i (t) = dW

Q
i (t) − λi

√
v1(t)dt, dW

P

i (t) = dW
Q

i (t) − λi

√
v2(t)dt, i = 1, ..., N (19)

and

dZP(t) = dZQ(t) − ν
√
v1(t)dt, dZ

P
(t) = dZ

Q
(t) − ν

√
v2(t)dt, (20)

which implies the following dynamics of the forward swap rate under P

dSm,n(t) =

(
−

N∑

i=1

σS,i(t, Tm, Tn)
(
(σA,i(t, Tm, Tn) + λi)v1(t) + (σA,i(t, Tm, Tn) + λi)v2(t)

)
)
dt +

N∑

i=1

σS,i(t, Tm, Tn)
(√

v1(t)dW
P
i (t) +

√
v2(t)dW

P

i (t)
)
, (21)

where

dv1(t) =
(
η1 − κP

1v1(t) − κ12v2(t)
)
dt+ σv1

√
v1(t)dZ

P(t) (22)

dv2(t) =
(
η2 − κ21v1(t) − κP

2v2(t)
)
dt+ σv2

√
v2(t)dZ

P
(t), (23)

and κP
1 = κ1 − σv1νv and κP

2 = κ2 − σv2νv.

4.1.3 Dynamics under the annuity measure

As discussed in Section 3, for pricing swaptions it is convenient to work under the annuity

measure, A. Straightforward computations give the following dynamics of the forward swap

rate under A

dSm,n(t) =

N∑

i=1

σS,i(t, Tm, Tn)
(√

v1(t)dW
A
i (t) +

√
v2(t)dW

A

i (t)
)
, (24)

where

dv1(t) =
(
η1 − κA

1 v1(t) − κ12v2(t)
)
dt+ σv1

√
v1(t)dZ

A(t) (25)

dv2(t) =
(
η2 − κ21v1(t) − κA

2 v2(t)
)
dt+ σv2

√
v2(t)dZ

A
(t), (26)

and κA
1 = κ1 − σv1

∑N
i=1 ρiσA,i(t, Tm, Tn) and κA

2 = κ2 − σv2
∑N

i=1 ρiσA,i(t, Tm, Tn). This leads

to a fast and accurate Fourier-based pricing formula for swaptions derived in Appendix A.
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4.1.4 Model features

The model has the potential to match the main stylized facts regarding conditional moments

of the swap rate distributions reported in Section 3. A specification with only one volatility

process could capture the cross-sectional variation in average conditional swap rate volatil-

ity and skewness. The former requires specifying the zero-coupon bond volatility functions,

σP,i(t, T ), such that the intermediate part of the term structure is the most volatile. The

latter is a consequence of a mean-reverting volatility processes combined with the possibility

of correlation between innovations to the term structure and volatility. Clearly, a specification

with only one volatility process would also be consistent with variation in conditional swap

rate volatility over time, including the unspanned stochastic volatility phenomenon. However,

it would not be consistent with two important properties of conditional swap rate skewness;

first, its significant variation over time – in particular the switch in the sign of skewness – and,

second, the fact that skewness is largely unspanned by rates and volatility. In order to match

these two properties, we need at least two volatility processes along with certain parameter

restrictions.

To illustrate how a specification with two volatility processes could be consistent with the

first property, consider the case of N = 1. In this case, the instantaneous correlation between

innovations to the forward swap rate, Sm,n(t), and its variance, σS,1(t, Tm, Tn)(v1(t) + v2(t)),

is given by

σv1ρ1v1(t) + σv2ρ1v2(t)√
v1(t) + v2(t)

√
σ2

v1v1(t) + σ2
v2v2(t)

, (27)

which depends on the relative magnitudes of v1(t) and v2(t) and may switch sign if ρ1 and

ρ1 have opposite signs. Conditional swap rate skewness, which depends on this correlation,

may therefore also switch sign.25 Obviously, with N > 1, one can generate richer dynamics in

conditional skewness.

For a specification with two volatility processes to also be consistent with the unspanned

stochastic skewness property, we impose that the drift and diffusion parameters of the volatility

processes are identical.26 Then, shocks to v1(t) and v2(t) have the same effect on conditional

25Carr and Wu (2007) and Christoffersen, Heston, and Jakobs (2009) use a similar technique to generate

stochastic skewness in currency and stock return distributions.

26In this case (27) reduces to a simple weighted average of ρ1 and ρ1

ρ1w(t) + ρ1(1 − w(t)), w(t) =
v1(t)

v1(t) + v2(t)
. (28)
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swap rate volatility and conditional swap rate skewness may vary independently of conditional

swap rate volatility.

4.1.5 Model specifications

It is well known that the term structure of interest rates is driven by three factors, and,

accordingly, we set N = 3 in all specifications. For the bond price volatility functions in (13),

we note that we can equally well specify the volatility functions for instantaneous forward

rates, since the two are related by σP,i(t, T ) = −
∫ T
t σf,i(t, u)du. As it is generally easier to

relate to interest rate volatility than bond price volatility, we show both. The specifications

we use are

σf,1(t, T ) = α1e
−ξ(T−t) σP,1(t, T ) = α1

ξ

(
e−ξ(T−t) − 1

)

σf,2(t, T ) = α2e
−γ(T−t) σP,2(t, T ) = α2

γ

(
e−γ(T−t) − 1

)

σf,3(t, T ) = α3(T − t)e−γ(T−t) σP,3(t, T ) = α3

γ2

(
e−γ(T−t) − 1

)
+ α3

γ (T − t)e−γ(T−t).

The second and third are the “slope” and “curvature” factor loadings proposed by Nelson and

Siegel (1987), while the first becomes their “level” factor loading in the limit ξ → 0. These

factor loadings are popular in the term structure literature as they parsimoniously capture

the predominant shocks to the term structure. The reason behind modifying the first factor

loading relative to Nelson and Siegel (1987) is that this allows us to express the dynamics

of the term structure in terms of a finite dimensional affine state vector, making it possible

to estimate the model with well-established techniques from the vast affine term structure

literature (in reality, ξ is estimated close to zero, which implies that the first factor still acts

like a level factor). The affine representation of the model can be derived along the lines of

Trolle and Schwartz (2009) and, due to space constraints, is given in a separate appendix

available upon request.27

For the volatility dynamics, we consider two specifications. In what we denote the SV1

specification, we assume that there is only one volatility factor, v1(t). In what we call the SV2

specification, we assume that there are two volatility factors, v1(t) and v2(t), but impose that

η1 = η2, κ1 = κ2, κ12 = κ21 = 0, and σv1 = σv2, in which case the volatility factors only differ

27In principle, the model is time-inhomogeneous and fits the initial term structure by construction. For

the purpose of estimation it is more convenient to work with the model’s time-homogeneous counterpart. We

therefore assume that the initial forward rate curve is flat and equal to a constant, ϕ, which is an additional

parameter of the model. One can show that ϕ equals the infinite-maturity forward rate.
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in terms of the their correlation with the term structure factors.28 In Section 6.1, we consider

more general specifications.

Coupled with the market price of risk specification discussed above, SV1 (SV2) has 11 (14)

risk-neutral parameters and 6 (8) market price of risk parameters, which is well within what

is often encountered in the empirical term structure literature. Given the vast amount data

at our disposal, the model is quite tightly parameterized.

4.1.6 Maximum-likelihood estimation

We estimate the two specifications on all available swap rates and swaptions using maximum-

likelihood in conjunction with Kalman filtering. Critical to estimating the model on all swap-

tions across time, and across all option expiries, swap maturities, and strikes, is the existence

of an efficient pricing formula. Due to the non-linearities in the relationship between obser-

vations and state variables, we apply the non-linear unscented Kalman filter.29 Details are

provided in Appendix B.

4.2 Results

Table 4 displays parameter estimates of the SV1 and SV2 specifications in the two markets.30 31

One thing to note about the estimates of the SV2 specification is the opposite sign on ρi and

ρi, for most i, which is consistent with stochastic skewness that may switch sign. When v1(t)

is high relative to v2(t), the swap rate distributions will be skewed towards lower interest rates,

whereas when v1(t) is low relative to v2(t), the swap rate distributions will be skewed towards

28For the specifications to be identified, we set σv1 = 1 in SV1, and σv1 = σv2 = 1 in SV2.

29The unscented Kalman filter has gained popularity in recent years as an alternative to the more standard

extended Kalman filter. Christoffersen et al. (2009) perform an extensive Monte Carlo experiment, which

shows that the unscented Kalman filter significantly outperforms the extended Kalman filter in the context of

estimating dynamic term structure models with swap rates. Their results most likely carry over to our context,

where swaptions are also used in the estimation.

30Since we are mainly interested in the higher-order moments of the swap rate distributions, and to preserve

space, we have left out the estimates of premia associated with interest rate risk (λ1, λ2, λ3, λ1, λ2, and λ3)

from the table. These estimates are in a separate table available upon request.

31The asymptotic covariance matrix of the estimated parameters is computed from the outer-product of

the first derivatives of the likelihood function. Theoretically, it would be more appropriate to compute the

asymptotic covariance matrix from both the first and second derivatives of the likelihood function. In reality,

however, the second derivatives of the likelihood function are somewhat numerically unstable.
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higher interest rates. Another thing to note is that the premia associated with volatility risk,

ν and ν, are estimated to be significant and negative. This issue is explored further below.

From the filtered state variables, we compute fitted values of interest rates and swaptions,

as well as pricing errors. For swaptions, the pricing errors are the differences between fitted

and actual normal implied volatilities. On each day in the sample, we then compute the root

mean squared pricing errors (RMSEs) of the interest rates and swaptions available on that

day. This way we construct time series of RMSEs for each model specification. The fit to

interest rates is very good and very similar for the two model specifications. In the USD

market, for instance, the mean RMSE is about 5 bp. This finding is not surprising, since both

specifications have three term structure factors and similar estimates for the factor loadings.

More interesting is the fit to swaptions. The first row of Table 5 displays the mean of the

RMSEs. It also displays the mean difference in RMSEs between the two model specifications,

and the associated t-statistics. The difference in overall pricing errors is strongly significant.

For instance, in the USD market, the mean RMSE drops from 5.44 bp to 4.58 bp.

As an example of the improved fit, Figure 2 shows actual and fitted time-series of the USD

normal implied volatility smile of the 1-year option on 10-year swap rate. Clearly, the SV2

specification matches the variation in the implied volatility smile much better than the SV1

specification.

To understand the improvement in pricing, we compute volatility (annualized), skewness,

and kurtosis of the future swap rate distributions (under A) implied by the two model specifi-

cations. This is done using the fitted swaption prices and the same interpolation/extrapolation

scheme as in Section 3. On each day in the sample, we then compute RMSEs across all tenor

– option expiry categories, where the errors are now the differences between actual and fitted

moments, rather than implied volatilities. This way we construct time series of RMSEs of

volatility, skewness, and kurtosis for each model specification. The second to fourth row of

Table 5 display the means of these RMSEs as well as the mean differences in RMSEs between

the two model specifications and the associated t-statistics. The mean volatility RMSEs are

very similar for the two model specifications, and the difference is not very significant. This is

expected, given that we impose that the two volatility state variables in the SV2 specification

only differ in terms of their correlation parameters. In contrast, the mean skewness RMSE

is significantly lower for the SV2 specification. For instance, in the USD market the mean

19



skewness RMSE is 0.21 and 0.05, for the SV1 and SV2 specification, respectively.32

To visualize the improvement in the fit to the moments, Figure 1 displays time-series of

conditional volatility and skewness of the 1-year ahead distribution of the USD 10-year swap

rate (again under A). While both model specifications have very similar fit to conditional

volatility, they differ markedly in their fit to conditional skewness. The SV1 specification has

too little variation in conditional skewness, and model-implied skewness is in fact negatively

correlated with actual skewness. In contrast, conditional skewness of the SV2 specification

tracks actual skewness closely – in particular, it captures the switches between positive and

negative skewness.

Table 6 elaborates on the relative fit to skewness. It displays the mean differences in abso-

lute skewness errors for the two specifications within each tenor – option expiry category, and

the associated t-statistics. It shows that the SV2 specification entails a significant improvement

in the fit to skewness across virtually the entire swaption matrix.

For each specification, we also run the unspanned stochastic skewness regressions from

Section 3; i.e. regressing changes in the conditional skewness on the main PCs driving weekly

changes in forward swap rates and conditional volatilities. For the SV1 specification, the R2s

are large, ranging from 0.48 to 0.91 with an average of 0.72, implying that skewness risk is

largely spanned. In contrast, the SV2 specification generates a degree of unspanned stochastic

skewness which is close to that observed in the data with R2s ranging from 0.06 to 0.21 with

an average of 0.13 (compared with 0.14 in the data).

Having established that the SV2 specification provides a good fit to the cross-sectional

and time-series variation in the conditional moments (particularly volatility and skewness)

of the swap rate distributions under A, we use the model to infer the conditional moments

under the risk-neutral measure Q and the physical measure P. This is done by simulating the

distributions of future swap rates, using the formulas in Sections 4.1.1 and 4.1.2, and from the

simulated distributions computing the moments.33 We then define volatility risk premia as

the differences between conditional swap rate volatilities under P and Q. Similarly, we define

skewness risk premia as the differences between conditional swap rate skewness under P and

Q.

Table 7 shows, for each point on the swaption matrix, the average volatility risk premium

and, in parentheses, the standard deviation of the volatility risk premium. Average volatility

32Note that the mean kurtosis RMSE is also significantly lower for the SV2 specification.

33We use 50.000 simulations and anti-thetic variates.
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risk premia are negative across the matrix for both currencies, implying that conditional

volatility is typically higher under Q than P, which is consistent with what Duarte, Longstaff,

and Yu (2007) find for the USD cap/floor market.34 Volatility risk premia are somewhat more

negative in the USD market than in the EUR market.

Table 8 shows results for skewness risk premia. Average skewness risk premia are negative

across the matrix for both currencies, implying that the conditional Q-distribution is typically

skewed more towards higher interest rates than the conditional P-distribution. Skewness risk

premia are of the same magnitude in the two markets.

5 Fundamental drivers of the swap rate distributions

While we have used a reduced-form dynamic term structure model to infer the conditional

moments of the swap rate distributions under P and Q, ultimately we are interested in under-

standing the fundamental drivers of these conditional moments. For this purpose, we regress

volatility and skewness of the physical swap rate distributions as well as volatility and skewness

risk premia on a number of variables motivated by economic theory and prior results in the

literature. We are primarily interested in the effects of macro-economic uncertainty, which we

proxy by dispersion and skewness of agents’ perceived probability distributions for future real

GDP growth and inflation. But we also control for other factors that may have an effect on

swap rate distributions, including moments of the equity index return distribution, a measure

of market-wide illiquidity, and a measure of refinancing activity. These variables are described

in more detail below.

5.1 Explanatory variables

5.1.1 Moments of agents’ belief distributions for future real GDP growth and

inflation

A number of equilibrium pricing models, primarily related to equity derivatives, imply that

volatility and volatility risk premia are increasing in uncertainty and/or disagreement among

34Our model likely understates the magnitude of volatility and skewness risk premia for very short horizons.

It is a well-known deficiency of stochastic volatility models that, for plausible parameter values, they cannot

generate a sufficiently large wedge between the P and Q distributions over very short horizons. To do so, we

would need to add a jump process to our model, which is possible, but beyond the scope of the present paper.
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agents about fundamentals. For instance, in long run risk models, where agents have prefer-

ences for early resolution of uncertainty, and macro-economic uncertainty is stochastic, eco-

nomic uncertainty is a priced source of risk.35 That is also the case in models where agents

have incomplete information and face fundamentals subject to regime switches.36 Similarly,

in models where agents have incomplete information and heterogeneous beliefs, disagreement

among agents is a priced source of risk.37

Motivated by these papers, we investigate the extent to which agents’ perceptions about

macro-economic risks affect swap rate distributions. We focus on the perceived risks to future

real GDP growth and inflation, which are among the most important fundamental determi-

nants of interest rates. For this purpose, we use the quarterly survey of professional forecasters

(SPF) conducted in the US by the Federal Reserve Bank of Philadelphia and in the Eurozone

by the ECB. The SPF is unique, because participants are asked to assign a probability dis-

tribution to their forecasts for real GDP growth and inflation. We aggregate the probability

distributions of the individual respondents, and compute dispersion (i.e., standard deviation)

and skewness of the aggregate distributions of future real GDP growth and inflation.38 Note

that these aggregate belief distributions take both individual uncertainty and disagreement

among agents into account.39

5.1.2 Moments of the equity index return distribution

Numerous papers have documented that equity and fixed-income markets are interconnected.

We therefore investigate the extent to which the characteristics of the equity index return

distribution have an impact on the swap rate distributions. Specifically, we consider the S&P

35See, e.g., Eraker and Shaliastovich (2008), Bollerslev, Tauchen, and Zhou (2009), Bollerslev, Sizova, and

Tauchen (2009), Drechsler and Yaron (2009), and Shaliastovich (2009).

36See, e.g., David and Veronesi (2002, 2009).

37See, e.g., Buraschi and Jiltsov (2006) and Buraschi, Trojani, and Vedolin (2009).

38Participants are asked to provide probability distributions for the current and following calendar year. We

follow Bekaert and Engstrom (2009) in weighting the probability distributions so as to maintain a 1-year-ahead

forecast horizon. Another issue is that in forming their probability distributions, respondents are asked to attach

probabilities to the outcome being in specific ranges. When computing moments of the aggregate distributions,

we assume that the probability for a given range relates to the mid-point of that range.

39For instance, one can show that the variance of the aggregate distribution is equal to the average variance

of the individual distributions (i.e. individuals’ uncertainty) plus the variance of the point estimates (i.e.

disagreement), see Giordani and Soderlind (2003).
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500 index in the USD market and the Eurostoxx 50 in the EUR market and compute volatility

and skewness of the risk-neutral return distributions in a model independent way, using the

formulas in Bakshi, Kapadia, and Madan (2003). As in Section 3, this involves integrating

over options with different strikes. We obtain risk-neutral moments for return horizons cor-

responding to the option expiries that are traded, and we use the first principal component

of volatility and skewness, respectively, in the regressions.40 Our measure of volatility in the

USD market has a very high correlation (above 0.98) with the VIX index, which has been

used in numerous studies as a proxy for overall financial market volatility, or as a sentiment

indicator.

5.1.3 Market-wide illiquidity

A number of papers show that liquidity affects derivatives prices.41 Unfortunately, our data

set does not include bid-ask spreads or other measures, such as market depth, that can be used

to construct liquidity measures at the level of individual contracts. Instead, we investigate the

effect of liquidity at the market-wide level. As a proxy for market-wide illiquidity, we use the

spread between the 3-month overnight index swap (OIS) rate and the 3-month Treasury bill

yield (for the EUR market, we use the German counterpart to the 3-month Treasury bill).

Since an OIS is a measure the expected average overnight rate during the life of the swap and

is virtually free of credit and counterparty risk, the spread is a fairly clean proxy for illiquidity,

as also observed by Krishnamurthy (2010).42

40For the S&P 500 index, the first principal component explains 98 (92) percent of the variation in volatility

(skewness) across the option expiries. For the Eurostoxx 50, the numbers are similar.

41For instance, in the related market for caps and floors, Deuskar, Gupta, and Subrahmanyam (2010) find

that liquidity, as proxied by bid-ask spreads, impacts prices. Other studies include Cetin et al. (2006) and

Bongaerts, de Jong, and Driessen (2010), who provide theory and evidence in support for liquidity having an

impact on the pricing of stock options and credit default swaps.

42In the USD market, an OIS is referenced to the overnight federal funds rate, while in the EUR market, it

is referenced to the euro overnight index average (EONIA) rate. The swap contract itself is fully collateralized,

making credit and counterparty risk negligible. As an alternative illiquidity proxy, we have used the spread

between yields on off-the-run and on-the-run government bonds of comparable maturities but found similar

results.
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5.1.4 Refinancing activity

Several papers find that derivatives prices are affected by supply and demand.43 In the swap-

tion market, dealers absorb or redistribute supply and demand for volatility. From a dealer

perspective, much of the supply of volatility emanates from issuance of callable debt by fi-

nancial institutions and large corporations. A significant part of this debt is swapped into

floating rate payments with the embedded optionality often passed on to dealers. In the USD

market, an important demand for volatility comes from investors in MBSs, who actively hedge

the negative convexity risk stemming from the prepayment options embedded in fixed rate

mortgages. Active hedgers include mortgage giants Federal National Mortgage Association

(“Fannie Mae”) and the Federal Home Loan Mortgage Corporation (“Freddie Mac”)44 as well

as mortgage hedge funds.

Since there is no quantitative information on the flows in the swaption market, it is difficult

to estimate the extent to which demand and supply affects pricing. Like previous papers,

we focus on the effect of refinancing activity. Duarte (2008) uses a measure of the average

refinancing incentive in the mortgage universe as a proxy for the swaption demand by active

hedgers in the MBS market and finds that hedging pressures have a significant impact on

realized and implied volatility levels. We take a simpler route and use the Mortgage Bankers

Association (MBA) Refinancing Index, which is a weekly measure of refinancing activity.45

5.2 Results

We face two issues regarding the regressions. First, in principle we could run regressions

for volatility, skewness, and associated risk premia in each tenor – option expiry category.

However, as these quantities are highly correlated across the swaption matrix, we instead run

regressions using cross-sectional averages of volatility, skewness, and associated risk premia.46

43For instance, Bollen and Whaley (2004) and Gârleanu, Pedersen, and Poteshman (2009) find demand effects

in the pricing of equity options.

44Fannie Mae and Freddie Mac were placed into conservatorship in September 2008. However, they were

allowed to increase (and actively hedge) their total portfolio of retained mortgages to USD 1.7tn by 2009.

Therefore, they continue to play a role in the interest rate derivatives market.

45The same proxy is used by Li and Zhao (2009) to study the effect of refinancing activity on the cap/floor

market.

46Very similar results are obtained if, instead of using cross-sectional averages, we use the first principal

components of volatility, skewness, and associated risk premia.
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In other words, our focus is on understanding the overall time-series variation, rather than

the cross-sectional variation. Second, our proxies for macro-economic uncertainty are only

available at a quarterly frequency, while the remaining variables are available at a weekly

frequency. To make use of all the information in the data, we run MIDAS-type regressions47

of the following form

yt = β0 + β1f(θ, τ)GDPvoltq + β2f(θ, τ)GDPskewtq + β3f(θ, τ)INFvoltq + β4f(θ, τ)INFskewtq +

β5EQvolt + β6EQskewt + β7ILLIQt + β8REFIt + ǫt, (29)

where τ = t− tq is the time between the weekly observation at t and the most recent quarterly

observation at tq, and yt is the cross-sectional average of either physical volatility, volatility risk

premia, physical skewness, or skewness risk premia. The function f(θ, τ) weighs the quarterly

observations according to their distance from t. We assume the following simple functional

form f(θ, τ) = exp(−θτ); i.e., the weights are exponentially declining in τ . We also assume

that the same weighing function applies to all four quarterly series. The MIDAS regression

model is estimated by non-linear least squares, and Tables 9 and 10 display the results for the

USD and EUR markets, respectively.

Consider first the relationships between the swap rate distributions and the characteristics

of agents’ belief distributions for the macro-economy. In the USD market, physical swap rate

volatility depends significantly and positively on the dispersion of agents’ GDP belief distri-

bution, while volatility risk premia have a significantly negative dependance on the dispersion

of agents’ GDP beliefs. That is, an increase in the perceived uncertainty about future real

GDP growth increases risk-neutral swap rate volatility more than physical volatility. This is

consistent with the various types of equilibrium models, mentioned above, in which an in-

crease in uncertainty and/or disagreement among agents about fundamentals increases both

risk-neutral and physical volatility as well as the wedge between the two, since uncertainty

and/or disagreement directly enters the stochastic discount factor. Also, consistent with intu-

ition, physical swap rate skewness depends positively and significantly on the skewness (and,

to a lesser extent, the dispersion) of agents’ GDP beliefs; i.e., when the perceived risk to future

real GDP growth is more skewed to the upside, the physical swap rate distributions tend to

be skewed towards higher interest rates.

47MIxed DAta Sampling regressions have become popular in the econometrics literature following the initial

publications by Ghysels, Santa Clara, and Valkanov (2005, 2006).
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In the EUR market, physical swap rate volatility depends significantly and positively on

the dispersion of agents’ inflation belief distribution (and, more weakly, on the skewness of

GDP beliefs), while volatility risk premia have a significantly negative dependance on the

dispersion of inflation (and, to a lesser extent, GDP) beliefs. That is, perceived uncertainty

about future inflation appear to be a relatively more important state variable for volatility

and volatility risk premia than perceived uncertainty about future real GDP growth. Physical

swap rate skewness depends positively and significantly on the skewness of agents’ inflation

beliefs (and, more weakly, on the dispersion of inflation beliefs), while skewness risk premia

have a significantly negative dependence on the skewness of inflation beliefs (there is also a

weak dependence on the dispersion of GDP and inflation beliefs). The latter result possibly

reflects agents’ dislike for high inflation states; when the physical likelihood of high interest

rates due to high inflation increases, the risk-neutral likelihood of these states increases even

more, increasing risk-neutral skewness relative to physical skewness.

It is striking that the characteristics of agents’ inflation beliefs are the main determinant

of EUR swap rate distributions, while the USD swap rate distributions are mostly related to

the characteristics of agents’ GDP beliefs. One likely explanation is differences in monetary

policy objectives in the two economies. The primary policy goal of the European Central Bank

is to maintain price stability, whereas the Federal Reserve has a dual mandate of maximum

employment and price stability, leading it to place relatively more emphasis on expectations

for real GDP growth when setting interest rates.48

Next, consider the relationships between the swap rate distributions and the equity in-

dex return distribution, market-wide illiquidity, and refinancing activity. In both markets,

equity return volatility has a significantly positive effect on physical swap rate volatility and a

significantly negative effect on volatility risk premia, while equity return skewness has a signif-

icantly positive effect on physical swap rate skewness. These results underscore the integration

between equity and fixed income markets.

Market-wide illiquidity has a significantly positive effect on physical swap rate volatility

and, in the USD market, a significantly negative effect on volatility risk premia. That is, a

deterioration in liquidity increases risk-neutral swap rate volatility more than physical volatil-

48The different policy objectives of the two central banks were clearly illustrated on July 2, 2008, when

the ECB, despite signs of financial stress and weakening growth, raised its benchmark rate in a bid to attack

inflation. At that point, the Federal Reserve had already reduced its benchmark rate significantly to support

economic growth in the face of the financial crisis.
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ity.49

Finally, in the USD market, refinancing activity has a significantly positive effect on phys-

ical swap rate volatility and a (marginally) significantly negative impact on volatility risk pre-

mia. Compared with the results in Duarte (2008) (and Li and Zhao (2009) for the cap/floor

market), the effect of refinancing activity is relatively modest. This may be due to differences

in data, sample period, and methodology, but may also, in part, reflect the Federal Reserve’s

USD 1.25 trillion program to purchase MBSs, initiated in late 2008. Since the Federal Reserve

does not engage in convexity hedging, its massive involvement in the MBS market reduces the

effect of refinancing activity on the swaption market.50 Refinancing activity, which is a U.S.

phenomenon, has virtually no effect on the swap rate distributions in the EUR market.

6 Robustness checks

Our inferences in Sections 4 and 5 are clearly model dependent. In this final section, we consider

the robustness of our results to alternative specifications for the term structure model, the risk

premia, and the regressions.

6.1 Alternative term structure model specifications

First, we relax the constraints in the SV2 specification that the drift and diffusion parameters

of the volatility processes are identical. We denote this specification SV2gen. Compared to

the SV2 specification, the speed of mean-reversion decreases for v1(t) and increases for v2(t),

while the correlation parameters ρi and ρi become more similar for all i. As a consequence,

the fit to conditional swap rate volatilities improves, while the fit to conditional swap rate

skewness deteriorates.51 Also, skewness risk is largely spanned in the SV2gen specification,

with the unspanned stochastic skewness regressions producing an average R2 of 0.76. Hence,

49Note that there is a relatively high correlation between our illiquidity proxy and equity market volatility.

Leaving out equity market volatility from the regressions increases the importance of market-wide illiquidity

for physical swap rate volatility and volatility risk premia.

50This appear to be a consensus view among market participants. For instance, in a recent research report,

Barclays Capital (2010) concludes that “...the Fed portfolio serves as a dampener on the option bid from MBS

portfolios”.

51Compared to the SV2 specification, in the USD market, the mean RMSE of swaption implied volatilities

decreases from 4.58 to 4.22. The mean RMSE of conditional swap rate volatilities decreases from 4.83 to 3.97,

while the mean RMSE of conditional swap rate skewness increases from 0.05 to 0.16.
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the SV2gen specification trades a worse fit to conditional skewness for a better fit to conditional

volatility. As we are interested in capturing the dynamics of both moments, we therefore do

not consider this specification in more detail.

As an alternative, we instead extend the SV2 specification with an additional process,

which captures low-frequency variation in v1(t) and v2(t). Specifically, we set η1 = η2 = η(t),

where η(t) follows the stochastic process

dη(t) = (η − κηη(t)) dt+ ση

√
η(t)dZ̃Q(t), (30)

where Z̃Q(t) is another Wiener process uncorrelated with ZQ(t) and Z
Q
(t) (as well as with

W
Q
i (t) and W

Q

i (t), i = 1, ..., N).52 We denote this specification SV3. The estimated parame-

ters of the v1(t) and v2(t) processes are similar to those in the SV2 specification, except that

the speed of mean-reversion is somewhat faster, while the process for η(t) is estimated to have

fairly slow mean-reversion. The SV3 specification succeeds in improving the fit to conditional

volatility, while preserving the fit to conditional skewness.53 It also preserves the unspanned

nature of skewness risk with the unspanned stochastic skewness regressions producing R2s

only slightly larger than those of the SV2 specification. However, despite its better fit, the

time-series for the cross-sectional averages of volatility and skewness of the physical swap rate

distributions as well as volatility and skewness risk premia correspond rather closely to those of

the SV2 specification. For this reason, and because we value parsimony, we base our inferences

on that specification.

6.2 Alternative risk premia specifications

We have experimented with the following, more flexible, market price of risk specification,

first suggested by Cheredito, Filipovic, and Kimmel (2007) and Collin-Dufresne, Goldstein,

and Jones (2009):

dZP(t) = dZQ(t) − ν0 + νv1(t)√
v1(t)

dt, dZ
P
(t) = dZ

Q
(t) − ν0 + νv2(t)√

v2(t)
dt. (31)

52Via a straightforward extension of the results in Appendix A, swaptions can also be priced quasi-analytically

in this specification. To get the dynamics for η(t) under the physical probability measure P, we apply the

following market price of risk specification: dZ̃P(t) = dZ̃Q(t) − ν̃
√

η(t)dt.

53Indeed, compared to the SV2 specification, in the USD market, the mean RMSE of swaption implied

volatilities decreases from 4.58 to 3.29, with the mean RMSE of conditional swap rate volatilities decreasing

from 4.83 to 3.49, and the mean RMSE of conditional swap rate skewness essentially unchanged.
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For ν0 = ν0 = 0, this reduces to the specification in (20).54 In practice, the additional flexibility

in (31) has little impact on the results, since, in all our estimation trials, ν0 and ν0 are not

significantly different from zero, and the estimates of ν and ν are similar to those reported in

Table 4.55 Also, conceptually we prefer (20) to (31), since in the latter specification, market

prices of risk may become arbitrarily large as the volatility processes approach their zero

boundaries, which is not particularly intuitive.

6.3 Alternative regression specifications

The MIDAS literature has proposed more flexible weighing functions than the simple one in

Section 5.2. We have experimented with several of these, but found the results quite robust

to the choice of (sensible) weighing scheme.

More importantly, we also run the regressions in quarterly differences, i.e.

∆ytq = β0 + β1∆GDPvoltq + β2∆GDPskewtq + β3∆INFvoltq + β4∆INFskewtq +

β5∆EQvoltq + β6∆EQskewtq + β7∆ILLIQtq + β8∆REFItq + ǫtq , (32)

where ∆ytq is the quarterly change in the cross-sectional average of either physical volatility,

volatility risk premia, physical skewness, or skewness risk premia. While this entails discarding

information, it may be more robust than the MIDAS specification. Tables 11 and 12 display

the results for the USD and EUR markets, respectively. The results are generally consistent

with those obtained from the MIDAS regressions. In particular, we continue to find that the

swap rate distributions are related to the characteristics of agents’ belief distributions for the

macro-economy, with GDP beliefs being the most important factor in the USD market and

inflation beliefs being the most important factor in the EUR market.

7 Conclusion

In this paper, we use a comprehensive database of inter-dealer quotes to conduct the first

empirical analysis of the dynamics of the swaption cube.

54The specification in (19) could also be made more general, but since we are mainly interested in the higher-

order moments of the swap rate distributions, we do not pursue such extensions here.

55For (31) to be consistent with absence of arbitrage, we need to impose the Feller conditions under P and

Q. As these are typically binding, we often experience a small deterioration in the fit to swaption.
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We first analyze the swaption cube from a model independent perspective. We use the

fact that for a given swap maturity and option expiry, one can compute conditional moments

of the swap rate distribution (under the annuity measure) at a time horizon equal to the

option expiry by suitably integrating over swaptions with different strikes. We establish a set

of stylized facts regarding the cross-sectional and time-series variation in conditional volatility

and skewness of the swap rate distributions. In particular, we show that skewness is stochastic,

largely unspanned by rates and volatility, and sometimes changes sign.

We then develop and estimate a stochastic volatility model of the term structure of swap

rates that is consistent with these stylized facts. This model is used to infer the conditional

swap rate distributions under the risk-neutral measure as well as the physical measure. We

show that the risk-neutral swap rate distributions on average exhibit higher volatility and are

more skewed towards higher rates than the swap rate distributions under the physical measure.

Finally, we investigate the fundamental drivers of the conditional swap rate distributions.

We find that physical volatility and skewness as well as volatility risk premia (defined as the

differences between physical and risk-neutral volatility) and skewness risk premia (defined in

a similar way) are significantly related to the characteristics of agents’ belief distributions for

the macro-economy, with GDP beliefs being the most important factor in the USD market,

and inflation beliefs being the most important factor in the EUR market. These different

market dynamics are consistent with differences in monetary policy objectives in the two

economies. The results hold true controlling for other factors that may have an effect on swap

rate distributions, including moments of the equity index return distribution, market-wide

liquidity, and refinancing activity.

In recent years, a number of equilibrium models for the term structure of interest rates

have been proposed.56 A key challenge for future fixed income research is developing successful

equilibrium models for interest rate derivatives. By investigating the fundamental determi-

nants of volatility and skewness of interest rate distributions, our paper provides the first step

in this direction.

56See, e.g., Piazzesi and Schneider (2007), Bansal and Shaliastovich (2009), Le and Singleton (2010), and

Xiong and Yan (2010).
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Appendix A

The weights in (17) and (18)

The weights ζj(t) in (17) are given by

ζm(t) =
P (t, Tm)

A(t, Tm, Tn)
(33)

ζj(t) = −τj−1S(t, Tm, Tn)
P (t, Tj)

A(t, Tm, Tn)
, j = m+ 1, ..., n − 1 (34)

ζn(t) = −(1 + τn−1S(t, Tm, Tn))
P (t, Tn)

A(t, Tm, Tn)
, (35)

while the weights χj(t) in (18) are given by

χj(t) =
τj−1P (t, Tj)

A(t, Tm, Tn)
, j = m+ 1, ..., n. (36)

Fourier-based pricing formula for swaptions

The dynamics of the forward swap rate under A is not entirely affine, due to the stochastic

weights ζj(t) and χj(t). However, these are low variance martingales under A, and following

much of the literature on LIBOR market models, we may “freeze” these at their initial values

to obtain a truly affine model, in which case swaptions can be priced quasi-analytically.57

First, we find the characteristic function of Sm,n(Tm) given by

ψ(u, t, Tm, Tn) = EA
t

[
eiuSm,n(Tm)

]
, (37)

where i =
√
−1. This has an exponentially affine solution as demonstrated in the following

proposition:

Proposition 1 (37) is given by

ψ(u, t, Tm, Tn) = eM(Tm−t)+
∑2

j=1 Nj(Tm−t)vj (t)+iuSm,n(t), (38)

57In a LIBOR market model setting, this “freezing” technique results in very small biases in swaptions prices.

Extensive simulations show that the biases are also very small in our context (these results are available upon

request).
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where M(τ), N1(τ), and N2(τ) solve the following system of ODEs

dM(τ)

dτ
= N1(τ)η1 +N2(τ)η2 (39)

dN1(τ)

dτ
=

(
−κA

1 + iuσv1

N∑

i=1

ρiσS,i(t, Tm, Tn)

)
N1(τ) − κ21N2(τ) +

1

2
N1(τ)

2σ2
v1

−1

2
u2

N∑

i=1

σS,i(t, Tm, Tn)2 (40)

dN2(τ)

dτ
=

(
−κA

2 + iuσv2

N∑

i=1

ρiσS,i(t, Tm, Tn)

)
N2(τ) − κ12N1(τ) +

1

2
N2(τ)

2σ2
v2

−1

2
u2

N∑

i=1

σS,i(t, Tm, Tn)2 (41)

subject to the boundary conditions M(0) = 0, N1(0) = 0, and N2(0) = 0.

Proof: Available upon request.

Next, we follow the general approach of Carr and Madan (1999) and Lee (2004) to price

swaptions. The idea is that the Fourier transform of the modified swaption price,

P̂m,n(t,K) = eαKPm,n(t,K), (42)

can be expressed in terms of the characteristic function of Sm,n(Tm).58 The swaption price is

then obtained by applying the Fourier inversion theorem. The result is given in the following

proposition:

Proposition 2 The time-t price of a European payer swaption expiring at Tm with strike K

on a swap for the period Tm to Tn, Pm,n(t,K), is given by

Pm,n(t,K) = Am,n(t)
e−αK

π

∫ ∞

0
Re

[
e−iuKψ(u− iα, t, Tm, Tn)

(α+ iu)2

]
du. (43)

Proof: Available upon request.

58The control parameter α must be chosen to ensure that the modified swaption price is L2 integrable, which

is a sufficient condition for its Fourier transform to exist.
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Appendix B. Maximum likelihood estimation

The state space form

We cast the model in state space form, which consists of a measurement equation and a

transition equation. The measurement equation describes the relationship between the state

variables and the prices of swaps and swaptions, while the transition equation describes the

discrete-time dynamics of the state variables.

Let Xt denote the vector of state variables. While the transition density of Xt is unknown,

its conditional mean and variance is known in closed form, since Xt follows an affine diffusion

process. We approximate the transition density with a Gaussian density with identical first

and second moments, in which case the transition equation becomes

Xt = Φ0 + ΦXXt−1 + wt, wt ∼ N(0, Qt), (44)

where Qt = Q0 +Qv1v1,t +Qv2v2,t and Φ0, ΦX , Q0, Qv1, and Qv2 are given in closed form.59

The measurement equation is given by

Zt = h(Xt) + ut, ut ∼ N(0,Ω), (45)

where Zt is a vector consisting of all the swaptions and underlying swap rates in the time-t

swaption cube, h is the pricing function, and ut is a vector of iid. Gaussian pricing errors with

covariance matrix Ω.

Ideally, we would like to fit the model directly to normal implied volatilities, which are

more stable than prices (or log-normal implied volatilities) along the swap maturity, option

expiry, moneyness, and time-series dimensions. This is not practical, however, since computing

implied volatilities from prices requires a numerical inversion for each swaption, which would

add an extra layer of complexity to the estimation procedure. Instead, we fit the model to

option prices scaled by their normal vegas (i.e., the sensitivities of the swaption prices to

variations in volatilities in the normal pricing model).60

59Approximating the true transition density with a Gaussian, makes this a QML procedure. While QML

estimation has been shown to be consistent in many settings, it is in fact not consistent in a Kalman filter

setting, since the conditional covariance matrix Qt in the recursions depends on the Kalman filter estimates of

the volatility state variables rather than the true, but unobservable, values; see, e.g., Duan and Simonato (1999).

However, simulation results in several papers have shown this issue to be negligible in practice.

60This essentially converts swaption pricing errors in terms of prices into swaption pricing errors in terms of

normal implied volatilities, via a linear approximation.

33



To reduce the number of parameters in Ω, we assume that the measurement errors are

cross-sectionally uncorrelated (that is, Ω is diagonal), and that one variance, σ2
rates, applies

to all pricing errors for swap rates, and that another variance, σ2
swaption, applies to all pricing

errors for scaled swaption prices.

The unscented Kalman filter

If the pricing function were linear, h(Xt) = h0+HXt, the Kalman filter would provide efficient

estimates of the conditional mean and variance of the state vector. Let X̂t|t−1 = Et−1[Xt] and

Ẑt|t−1 = Et−1[Zt] denote the expectation of Xt and Zt, respectively, using information up to

and including time t − 1, and let Pt|t−1 and Ft|t−1 denote the corresponding error covariance

matrices. Furthermore, let X̂t = Et[Xt] denote the expectation of Xt including information

at time t, and let Pt denote the corresponding error covariance matrix. The Kalman filter

consists of two steps: prediction and update. In the prediction step, X̂t|t−1 and Pt|t−1 are

given by

X̂t|t−1 = Φ0 + ΦXX̂t−1 (46)

Pt|t−1 = ΦXPt−1Φ
′
X +Qt, (47)

and Ẑt|t−1 and Ft|t−1 are in turn given by

Ẑt|t−1 = h(X̂t|t−1) (48)

Ft|t−1 = HPt|t−1H
′ + Ω. (49)

In the update step, the state estimate is refined based on the difference between predicted and

observed swaps and swaptions, with X̂t and Pt given by

X̂t = X̂t|t−1 +Wt(Zt − Ẑt|t−1) (50)

Pt = Pt|t−1 −WtFt|t−1W
′
t , (51)

where

Wt = Pt|t−1H
′F−1

t|t−1 (52)

is the covariance between pricing and filtering errors.

In our setting, the pricing function is non-linear for both swaps and swaptions, and the

Kalman filter has to be modified. Non-linear state space systems have traditionally been han-

dled with the extended Kalman filter, which effectively linearizes the measure equation around
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the predicted state. However, in recent years the unscented Kalman filter has emerged as an

attractive alternative. Rather than approximating the measurement equation, it uses the true

non-linear measurement equation and instead approximates the distribution of the state vector

with a deterministically chosen set of sample points, called “sigma points”, that completely

capture the true mean and covariance of the state vector. When propagated through the

non-linear pricing function, the sigma points capture the mean and covariance of swaps and

swaptions accurately to the 2nd order (3rd order for true Gaussian states) for any nonlinear-

ity.61

More specifically, a set of 2L+1 sigma points and associated weights are selected according

to the following scheme

X̂ 0
t|t−1 = X̂t|t−1 w0 = κ

L+κ

X̂ i
t|t−1 = X̂t|t−1 +

(√
(L+ κ)Pt|t−1

)

i
wi = 1

2(L+κ) i = 1, ..., L

X̂ i
t|t−1 = X̂t|t−1 −

(√
(L+ κ)Pt|t−1

)

i
wi = 1

2(L+κ) i = L+ 1, ..., 2L,

(53)

where L is the dimension of X̂t|t−1, κ is a scaling parameter, wi is the weight associated with

the i’th sigma-point, and
(√

(L+ κ)Pt|t−1

)

i
is the i’th column of the matrix square root.

Then, in the prediction step, (48) and (49) are replaced by

Ẑt|t−1 =

2L∑

i=0

wih(X̂ i
t|t−1) (54)

Ft|t−1 =
2L∑

i=0

wi(h(X̂ i
t|t−1) − Ẑt|t−1)(h(X̂ i

t|t−1) − Ẑt|t−1)
′ + Ω. (55)

The update step is still given by (50) and (51), but with Wt computed as

Wt =

2L∑

i=0

wi(X̂ i
t|t−1 − X̂t|t−1)(h(X̂ i

t|t−1) − Ẑt|t−1)
′F−1

t|t−1. (56)

Finally, the log-likelihood function is given by

logL = −1

2
log2π

T∑

i=1

Nt −
1

2

T∑

i=1

log|Ft|t−1| −
1

2

T∑

i=1

(Zt − Ẑt|t−1)
′F−1

t|t−1(Zt − Ẑt|t−1), (57)

where T is the number of observation dates, and Nt is the dimension of Zt.

61For comparison, the extended Kalman filter estimates the mean and covariance accurately to the 1st order.

Note that the computational costs of the extended Kalman filter and the unscented Kalman filter are of the

same order of magnitude.
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Tenor Option expiry

1 mth 3 mths 6 mths 9 mths 1 yr 2 yrs 5 yrs 10 yrs

Panel A: USD market

2 yrs 110.1
(35.5)

112.0
(31.5)

114.4
(27.9)

117.4
(26.9)

120.7
(26.6)

123.6
(24.6)

116.9
(18.0)

98.2
(12.0)

5 yrs 122.4
(37.4)

122.2
(33.5)

121.8
(29.4)

121.1
(27.4)

121.3
(26.3)

120.4
(23.2)

111.7
(16.5)

93.2
(10.4)

10 yrs 115.9
(36.6)

115.8
(32.7)

115.4
(28.7)

114.7
(26.5)

114.4
(25.0)

113.3
(22.0)

104.7
(15.0)

86.8
(9.2)

20 yrs 106.9
(36.1)

105.7
(31.4)

104.0
(26.7)

102.7
(24.0)

101.8
(21.8)

99.5
(18.6)

89.9
(12.3)

74.1
(7.9)

30 yrs 103.5
(37.6)

101.7
(31.5)

99.9
(26.3)

98.6
(23.4)

97.5
(20.9)

95.1
(17.1)

85.4
(10.8)

69.6
(6.3)

Panel B: EUR market

2 yrs 80.7
(29.2)

81.2
(24.6)

81.6
(20.2)

81.3
(17.2)

80.8
(15.3)

80.6
(12.9)

78.0
(8.7)

72.1
(6.3)

5 yrs 83.6
(25.3)

82.4
(21.1)

80.9
(17.1)

79.6
(14.8)

78.6
(13.4)

77.1
(11.5)

74.2
(8.5)

69.1
(7.2)

10 yrs 74.7
(23.1)

74.7
(20.5)

74.3
(17.6)

73.7
(15.9)

73.3
(15.0)

73.4
(13.6)

71.9
(9.9)

67.1
(7.6)

20 yrs 72.3
(30.0)

72.0
(26.4)

71.2
(21.8)

70.4
(19.3)

70.0
(18.0)

69.3
(15.4)

67.2
(10.9)

61.9
(8.2)

30 yrs 71.6
(36.8)

71.2
(32.5)

70.3
(26.7)

69.3
(23.0)

68.7
(20.8)

67.9
(17.6)

65.3
(12.9)

59.8
(9.2)

Notes: The table shows average conditional volatilities (annualized and in basis points) of the future swap rate

distributions under the annuity measure A. Standard deviations of conditional volatilities are in parentheses.

In the USD market, each statistic is computed on the basis of 419 weekly observations from December 19, 2001

to January 27, 2010. In the EUR market, each statistic is computed on the basis of 449 weekly observations

from June 6, 2001 to January 27, 2010.

Table 1: Volatility (annualized) of swap rate distributions



Tenor Option expiry

1 mth 3 mths 6 mths 9 mths 1 yr 2 yrs 5 yrs 10 yrs

Panel A: USD market

2 yrs 0.00
(0.30)

0.20
(0.36)

0.24
(0.43)

0.24
(0.40)

0.27
(0.42)

0.30
(0.41)

0.43
(0.33)

0.42
(0.29)

5 yrs 0.01
(0.20)

0.17
(0.23)

0.19
(0.28)

0.20
(0.25)

0.21
(0.28)

0.23
(0.34)

0.33
(0.35)

0.37
(0.30)

10 yrs −0.00
(0.17)

0.15
(0.18)

0.16
(0.22)

0.15
(0.20)

0.16
(0.23)

0.18
(0.30)

0.29
(0.34)

0.32
(0.31)

20 yrs −0.03
(0.13)

0.12
(0.13)

0.13
(0.16)

0.12
(0.16)

0.13
(0.19)

0.18
(0.25)

0.27
(0.32)

0.30
(0.36)

30 yrs −0.04
(0.14)

0.10
(0.13)

0.12
(0.15)

0.11
(0.15)

0.12
(0.17)

0.15
(0.23)

0.22
(0.30)

0.27
(0.33)

Panel B: EUR market

2 yrs −0.00
(0.15)

0.17
(0.21)

0.27
(0.28)

0.31
(0.27)

0.36
(0.29)

0.47
(0.35)

0.60
(0.33)

0.62
(0.38)

5 yrs −0.15
(0.38)

−0.03
(0.41)

0.04
(0.40)

0.09
(0.33)

0.12
(0.35)

0.22
(0.30)

0.39
(0.27)

0.46
(0.25)

10 yrs −0.21
(0.37)

−0.11
(0.39)

−0.06
(0.36)

−0.00
(0.29)

0.02
(0.30)

0.12
(0.25)

0.29
(0.25)

0.36
(0.25)

20 yrs −0.29
(0.28)

−0.16
(0.27)

−0.11
(0.24)

−0.05
(0.21)

−0.02
(0.22)

0.05
(0.22)

0.24
(0.24)

0.35
(0.27)

30 yrs −0.32
(0.29)

−0.18
(0.27)

−0.13
(0.25)

−0.07
(0.22)

−0.04
(0.24)

0.00
(0.24)

0.22
(0.28)

0.33
(0.34)

Notes: The table shows average conditional skewness of the future swap rate distributions under the annuity

measure A. Standard deviations of conditional skewness are in parentheses. In the USD market, each statistic

is computed on the basis of 419 weekly observations from December 19, 2001 to January 27, 2010. In the EUR

market, each statistic is computed on the basis of 449 weekly observations from June 6, 2001 to January 27,

2010.

Table 2: Skewness of swap rate distributions



Tenor Option expiry

1 mth 3 mths 6 mths 9 mths 1 yr 2 yrs 5 yrs 10 yrs

Panel A: USD market

2 yrs 0.09 0.12 0.16 0.17 0.17 0.15 0.12 0.11

5 yrs 0.10 0.10 0.12 0.17 0.19 0.17 0.16 0.16

10 yrs 0.08 0.07 0.09 0.16 0.20 0.17 0.20 0.25

20 yrs 0.07 0.05 0.07 0.10 0.15 0.16 0.19 0.28

30 yrs 0.06 0.04 0.03 0.06 0.12 0.19 0.22 0.24

Panel B: EUR market

2 yrs 0.08 0.11 0.14 0.18 0.20 0.21 0.21 0.19

5 yrs 0.03 0.05 0.08 0.10 0.14 0.20 0.25 0.29

10 yrs 0.01 0.04 0.07 0.10 0.14 0.22 0.29 0.34

20 yrs 0.01 0.05 0.08 0.11 0.15 0.23 0.29 0.34

30 yrs 0.02 0.05 0.09 0.12 0.15 0.22 0.26 0.30

Notes: The table shows the R2s from regressing weekly changes in conditional skewness of the swap rate

distributions on the main principal components (PCs) of weekly changes in all forward swap rates and the main

PCs of weekly changes in conditional variances of all swap rate distributions. We also include the squared PCs

in the regressions. In the USD market, the time-series is from December 19, 2001 to January 27, 2010. In the

EUR market, the time-series is from June 6, 2001 to January 27, 2010.

Table 3: Evidence for unspanned stochastic skewness



USD market EUR market

SV1 SV2 SV1 SV2

α1 0.0072
(0.0001)

0.0065
(0.0001)

0.0090
(0.0001)

0.0069
(0.0001)

α2 0.0021
(0.0000)

0.0028
(0.0000)

0.0016
(0.0000)

0.0061
(0.0001)

α3 0.0049
(0.0001)

0.0045
(0.0001)

0.0020
(0.0000)

0.0022
(0.0000)

ξ 0.0104
(0.0002)

0.0086
(0.0001)

0.0115
(0.0001)

0.0005
(0.0000)

γ 0.2471
(0.0046)

0.2435
(0.0034)

0.2795
(0.0042)

0.1670
(0.0023)

ϕ 0.0479
(0.0018)

0.0464
(0.0018)

0.0435
(0.0018)

0.0441
(0.0017)

ρ1 0.2546
(0.0202)

−0.1843
(0.0270)

0.0887
(0.0188)

−0.0446
(0.0265)

ρ2 0.5752
(0.0199)

−0.0945
(0.0298)

0.5263
(0.0247)

0.3736
(0.0207)

ρ3 −0.0019
(0.0204)

−0.3208
(0.0207)

−0.0509
(0.0201)

−0.5463
(0.0211)

ρ1 0.4753
(0.0230)

0.3736
(0.0216)

ρ2 0.5748
(0.0229)

0.5582
(0.0178)

ρ3 0.5247
(0.0201)

0.5199
(0.0264)

κ1 = κ2 0.5045
(0.0066)

0.4156
(0.0067)

0.5300
(0.0072)

0.6948
(0.0109)

η1 = η2 0.4957
(0.0075)

0.2404
(0.0029)

0.2797
(0.0039)

0.1981
(0.0022)

ν −0.2169
(0.0823)

−0.0873
(0.0225)

−0.2014
(0.0681)

−0.1320
(0.0427)

ν −0.2992
(0.0909)

−0.4377
(0.1329)

σrates × 104 6.3465
(0.0714)

6.3676
(0.0751)

5.4623
(0.0826)

5.4587
(0.1001)

σswaptions × 104 5.5125
(0.0775)

4.5998
(0.0861)

4.8212
(0.0540)

4.3356
(0.0550)

Log-likelihood ×104 -27.1280 -25.9420 -23.6951 -23.2632

Notes: Maximum-likelihood estimates of the SV1 and SV2 specifications. The sample period is December

19, 2001 to January 27, 2010 in the USD market and June 6, 2001 to January 27, 2010 in the EUR market.

Outer-product standard errors are in parentheses. σrates denotes the standard deviation of swap rate measure-

ment errors and σswaptions denotes the standard deviation of scaled swaption price measurement errors. For

identification purposes, we set σv1 = 1 in SV1, and σv1 = σv2 = 1 in SV2.

Table 4: Parameter estimates
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USD market EUR market

SV1 SV2 SV2-SV1 SV1 SV2 SV2-SV1

Swaption IV 5.44 4.58 −0.87
(−6.04)

∗∗∗ 4.72 4.31 −0.41
(−5.37)

∗∗∗

Volatility 4.96 4.83 −0.13
(−1.97)

∗∗ 3.83 3.76 −0.07
(−1.88)

∗

Skewness 0.21 0.05 −0.16
(−6.71)

∗∗∗ 0.24 0.08 −0.17
(−10.15)

∗∗∗

Kurtosis 0.34 0.21 −0.13
(−1.81)

∗ 0.47 0.30 −0.17
(−2.64)

∗∗∗

Notes: The table compares the SV1 and SV2 specifications in terms of their ability to match the normal

implied volatilities (in basis points) as well as conditional volatility (annualized and in basis points), skewness,

and kurtosis of the future swap rate distributions under the annuity measure A. It reports means of RMSE

time series of implied volatilities and swap rate moments. It also reports mean differences in RMSEs between

the two model specifications. T -statistics, corrected for serial correlation up to 26 lags (i.e., two quarters), are

in parentheses. In the USD market, each statistic is computed on the basis of 419 weekly observations from

December 19, 2001 to January 27, 2010. In the EUR market, each statistic is computed on the basis of 449

weekly observations from June 6, 2001 to January 27, 2010. *, **, and *** denote significance at the 10, 5, and

1 percent levels, respectively.

Table 5: Overall comparison between models



Tenor Option expiry

1 mth 3 mths 6 mths 9 mths 1 yr 2 yrs 5 yrs 10 yrs

Panel A: USD market

2 yrs −0.08
(−4.44)

∗∗∗ −0.12
(−3.94)

∗∗∗ −0.17
(−4.17)

∗∗∗ −0.20
(−4.56)

∗∗∗ −0.25
(−5.67)

∗∗∗ −0.29
(−6.97)

∗∗∗ −0.14
(−3.29)

∗∗∗ −0.05
(−2.46)

∗∗

5 yrs −0.06
(−3.45)

∗∗∗ −0.09
(−3.17)

∗∗∗ −0.14
(−3.98)

∗∗∗ −0.19
(−5.17)

∗∗∗ −0.24
(−6.68)

∗∗∗ −0.29
(−7.84)

∗∗∗ −0.22
(−6.47)

∗∗∗ −0.07
(−3.68)

∗∗∗

10 yrs −0.04
(−2.69)

∗∗∗ −0.07
(−2.75)

∗∗∗ −0.12
(−3.36)

∗∗∗ −0.17
(−5.19)

∗∗∗ −0.21
(−5.89)

∗∗∗ −0.27
(−6.74)

∗∗∗ −0.23
(−6.53)

∗∗∗ −0.07
(−2.95)

∗∗∗

20 yrs −0.07
(−3.79)

∗∗∗ −0.06
(−3.10)

∗∗∗ −0.13
(−4.81)

∗∗∗ −0.15
(−5.27)

∗∗∗ −0.17
(−5.51)

∗∗∗ −0.24
(−6.78)

∗∗∗ −0.26
(−7.67)

∗∗∗ −0.12
(−4.39)

∗∗∗

30 yrs −0.06
(−3.29)

∗∗∗ −0.06
(−2.17)

∗∗ −0.10
(−3.32)

∗∗∗ −0.14
(−4.42)

∗∗∗ −0.16
(−4.91)

∗∗∗ −0.24
(−6.49)

∗∗∗ −0.27
(−7.94)

∗∗∗ −0.14
(−4.50)

∗∗∗

Panel B: EUR market

2 yrs −0.04
(−2.18)

∗∗ −0.11
(−4.00)

∗∗∗ −0.15
(−4.11)

∗∗∗ −0.17
(−4.07)

∗∗∗ −0.21
(−4.07)

∗∗∗ −0.26
(−3.84)

∗∗∗ −0.27
(−4.81)

∗∗∗ −0.26
(−6.44)

∗∗∗

5 yrs −0.06
(−3.13)

∗∗∗ −0.15
(−7.39)

∗∗∗ −0.17
(−6.93)

∗∗∗ −0.20
(−6.54)

∗∗∗ −0.16
(−4.24)

∗∗∗ −0.20
(−3.93)

∗∗∗ −0.15
(−2.62)

∗∗∗ −0.20
(−5.18)

∗∗∗

10 yrs −0.07
(−3.01)

∗∗∗ −0.15
(−5.26)

∗∗∗ −0.20
(−6.17)

∗∗∗ −0.22
(−6.35)

∗∗∗ −0.22
(−5.71)

∗∗∗ −0.21
(−4.72)

∗∗∗ −0.10
(−1.95)

∗ −0.11
(−3.01)

∗∗∗

20 yrs −0.05
(−1.45)

−0.11
(−3.06)

∗∗∗ −0.19
(−4.32)

∗∗∗ −0.24
(−5.41)

∗∗∗ −0.27
(−5.96)

∗∗∗ −0.25
(−5.70)

∗∗∗ −0.09
(−2.45)

∗∗ −0.09
(−2.73)

∗∗∗

30 yrs −0.05
(−1.68)

∗ −0.13
(−3.63)

∗∗∗ −0.19
(−4.17)

∗∗∗ −0.19
(−3.77)

∗∗∗ −0.18
(−3.55)

∗∗∗ −0.24
(−5.55)

∗∗∗ −0.08
(−2.28)

∗∗ −0.08
(−2.64)

∗∗∗

Notes: The table compares the SV1 and SV2 specifications in terms of their ability to match skewness of the

future swap rate distributions under the annuity measure A. For each tenor – option expiry category, the table

reports the mean differences in absolute skewness errors between the two specifications, where skewness errors

are the differences between the model-implied skewness and the model independent skewness. T -statistics,

corrected for serial correlation up to 26 lags (i.e., two quarters), are in parentheses. In the USD market, each

statistic is computed on the basis of 419 weekly observations from December 19, 2001 to January 27, 2010.

In the EUR market, each statistic is computed on the basis of 449 weekly observations from June 6, 2001 to

January 27, 2010. *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively.

Table 6: Evaluating fit to skewness



Tenor Option expiry

1 mth 3 mths 6 mths 9 mths 1 yr 2 yrs 5 yrs 10 yrs

Panel A: USD market

2 yrs −0.93
(0.45)

−2.43
(1.16)

−4.13
(1.94)

−5.20
(2.40)

−5.72
(2.58)

−8.24
(3.46)

−14.27
(4.77)

−16.81
(3.67)

5 yrs −1.02
(0.49)

−2.67
(1.27)

−4.54
(2.13)

−5.72
(2.64)

−6.27
(2.84)

−8.96
(3.77)

−14.80
(4.93)

−16.66
(3.56)

10 yrs −1.00
(0.48)

−2.62
(1.25)

−4.46
(2.10)

−5.62
(2.60)

−6.17
(2.81)

−8.79
(3.73)

−14.30
(4.80)

−15.94
(3.42)

20 yrs −0.88
(0.42)

−2.30
(1.10)

−3.95
(1.86)

−4.99
(2.32)

−5.50
(2.52)

−7.94
(3.40)

−13.21
(4.52)

−15.05
(3.34)

30 yrs −0.82
(0.40)

−2.16
(1.03)

−3.70
(1.75)

−4.70
(2.19)

−5.19
(2.38)

−7.56
(3.25)

−12.81
(4.43)

−14.87
(3.37)

Panel B: EUR market

2 yrs −0.56
(0.16)

−1.47
(0.39)

−2.51
(0.61)

−3.14
(0.71)

−3.43
(0.72)

−4.81
(0.77)

−7.77
(0.61)

−9.47
(0.31)

5 yrs −0.55
(0.15)

−1.45
(0.38)

−2.47
(0.60)

−3.11
(0.70)

−3.40
(0.72)

−4.80
(0.77)

−7.82
(0.61)

−9.48
(0.31)

10 yrs −0.54
(0.15)

−1.41
(0.37)

−2.41
(0.59)

−3.03
(0.69)

−3.33
(0.70)

−4.72
(0.76)

−7.75
(0.60)

−9.40
(0.30)

20 yrs −0.50
(0.14)

−1.32
(0.35)

−2.26
(0.56)

−2.85
(0.65)

−3.13
(0.67)

−4.49
(0.72)

−7.55
(0.58)

−9.32
(0.30)

30 yrs −0.48
(0.14)

−1.28
(0.34)

−2.19
(0.54)

−2.77
(0.64)

−3.05
(0.65)

−4.41
(0.71)

−7.55
(0.59)

−9.45
(0.31)

Notes: Volatility risk premia are defined as the differences between conditional volatilities (annualized and in

basis points) of the future swap rate distributions under the physical measure P and the risk-neutral measure

Q. The table shows averages of volatility risk premia and, in parentheses, standard deviations of volatility risk

premia. In the USD market, each statistic is computed on the basis of 419 weekly observations from December

19, 2001 to January 27, 2010. In the EUR market, each statistic is computed on the basis of 449 weekly

observations from June 6, 2001 to January 27, 2010.

Table 7: Volatility risk premia



Tenor Option expiry

1 mth 3 mths 6 mths 9 mths 1 yr 2 yrs 5 yrs 10 yrs

Panel A: USD market

2 yrs −0.008
(0.015)

−0.030
(0.020)

−0.074
(0.044)

−0.096
(0.051)

−0.116
(0.055)

−0.222
(0.071)

−0.419
(0.053)

−0.689
(0.070)

5 yrs −0.007
(0.012)

−0.031
(0.020)

−0.075
(0.045)

−0.098
(0.052)

−0.118
(0.057)

−0.231
(0.076)

−0.451
(0.055)

−0.712
(0.067)

10 yrs −0.007
(0.012)

−0.031
(0.020)

−0.075
(0.045)

−0.098
(0.053)

−0.119
(0.059)

−0.237
(0.079)

−0.473
(0.055)

−0.724
(0.060)

20 yrs −0.007
(0.016)

−0.029
(0.020)

−0.073
(0.044)

−0.096
(0.052)

−0.117
(0.058)

−0.237
(0.081)

−0.478
(0.056)

−0.722
(0.051)

30 yrs −0.008
(0.019)

−0.029
(0.019)

−0.072
(0.043)

−0.094
(0.051)

−0.115
(0.057)

−0.235
(0.080)

−0.478
(0.056)

−0.723
(0.046)

Panel B: EUR market

2 yrs −0.008
(0.033)

−0.026
(0.021)

−0.068
(0.047)

−0.093
(0.058)

−0.117
(0.066)

−0.241
(0.098)

−0.407
(0.086)

−0.533
(0.054)

5 yrs −0.007
(0.031)

−0.034
(0.026)

−0.086
(0.057)

−0.113
(0.068)

−0.138
(0.075)

−0.266
(0.107)

−0.429
(0.089)

−0.552
(0.055)

10 yrs −0.008
(0.036)

−0.039
(0.029)

−0.097
(0.062)

−0.125
(0.073)

−0.151
(0.080)

−0.284
(0.111)

−0.450
(0.090)

−0.567
(0.054)

20 yrs −0.006
(0.047)

−0.039
(0.029)

−0.099
(0.062)

−0.128
(0.073)

−0.155
(0.080)

−0.292
(0.110)

−0.463
(0.088)

−0.572
(0.053)

30 yrs −0.012
(0.048)

−0.039
(0.028)

−0.097
(0.060)

−0.126
(0.071)

−0.153
(0.078)

−0.291
(0.107)

−0.467
(0.085)

−0.574
(0.052)

Notes: Skewness risk premia are defined as the differences between conditional skewness of the future swap

rate distributions under the physical measure P and the risk-neutral measure Q. The table shows averages of

skewness risk premia and, in parentheses, standard deviations of skewness risk premia. In the USD market,

each statistic is computed on the basis of 419 weekly observations from December 19, 2001 to January 27, 2010.

In the EUR market, each statistic is computed on the basis of 449 weekly observations from June 6, 2001 to

January 27, 2010.

Table 8: Skewness risk premia



GDPvol GDPskew INFvol INFskew EQvol EQskew ILLIQ REFI R2

vol 21.428
(4.888)

∗∗∗ 8.401
(2.064)

∗∗ 30.536
(0.854)

−6.701
(−0.690)

0.404

vol 19.027
(6.345)

∗∗∗ 0.892
(0.199)

51.982
(1.390)

9.763
(1.427)

77.317
(4.619)

∗∗∗ 127.823
(3.069)

∗∗∗ 11.401
(2.456)

∗∗ 2.142
(2.077)

∗∗ 0.585

volPrem −3.707
(−9.589)

∗∗∗ −0.736
(−2.628)

∗∗∗ −4.900
(−2.063)

∗∗ 0.496
(0.691)

0.540

volPrem −3.397
(−10.613)

∗∗∗ −0.288
(−1.002)

−2.758
(−1.021)

−0.171
(−0.292)

−7.050
(−5.980)

∗∗∗ −6.225
(−1.880)

∗ −0.897
(−2.015)

∗∗ −0.162
(−1.761)

∗ 0.641

skew 0.290
(1.907)

∗ 0.352
(2.773)

∗∗∗ −0.726
(−1.139)

−0.060
(−0.304)

0.413

skew 0.199
(1.677)

∗ 0.284
(2.373)

∗∗ −0.421
(−0.615)

0.123
(0.985)

0.729
(1.719)

∗ 3.971
(3.174)

∗∗∗ −0.192
(−1.241)

0.017
(0.810)

0.544

skewPrem 0.023
(1.741)

∗ 0.011
(1.814)

∗ 0.074
(1.208)

−0.035
(−1.786)

∗ 0.134

skewPrem 0.008
(1.760)

∗ 0.007
(1.319)

−0.004
(−0.088)

−0.015
(−1.495)

0.045
(1.892)

∗ −0.203
(−1.931)

∗ 0.010
(1.447)

−0.002
(−1.301)

0.248

Notes: The table reports estimates of the MIDAS regression specification (29) in which the cross-sectional average of USD physical volatility (vol), volatility

risk premia (volPrem), physical skewness (skew), or skewness risk premia (skewPrem) is regressed on a constant, dispersion and skewness of agents’ belief

distributions for future U.S. real GDP growth and inflation (GDPvol, GDPskew, INFvol, and INFskew), volatility and skewness of the risk-neutral S&P

500 index return distribution (EQvol and EQskew), the spread between the 3-month OIS rate and the 3-month Treasury bill yield (ILLIQ), and the

MBA Refinancing Index (REFI). Physical volatility and volatility risk premia are measured in basis points, and the MBA Refinancing Index is divided by

1000. Estimation is by non-linear least squares. T -statistics, corrected for heteroscedasticity and serial correlation up to 26 lags (i.e., two quarters), are in

parentheses. The sample period is December 19, 2001 to January 27, 2010. *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively.

Table 9: Fundamental drivers of USD swap rate distributions



GDPvol GDPskew INFvol INFskew EQvol EQskew ILLIQ REFI R2

vol −2.193
(−0.602)

3.153
(1.759)

∗ 106.612
(6.296)

∗∗∗ 10.677
(2.183)

∗∗ 0.630

vol 2.730
(1.092)

2.176
(1.856)

∗ 60.941
(4.924)

∗∗∗ 4.057
(1.017)

25.633
(3.817)

∗∗∗ 3.357
(0.174)

4.232
(1.882)

∗ 0.409
(0.749)

0.698

volPrem −0.781
(−2.063)

∗∗ −0.447
(−1.660)

∗ −7.063
(−3.937)

∗∗∗ −0.254
(−0.364)

0.411

volPrem −0.704
(−2.300)

∗∗ −0.425
(−1.588)

−4.759
(−3.160)

∗∗∗ −0.337
(−0.492)

−2.665
(−2.791)

∗∗∗ −4.165
(−1.426)

−0.520
(−1.587)

−0.067
(−0.884)

0.434

skew 0.256
(2.468)

∗∗ 0.047
(0.468)

−1.071
(−2.141)

∗∗ 0.483
(2.548)

∗∗ 0.269

skew 0.114
(1.226)

0.126
(1.338)

−0.877
(−1.718)

∗ 0.351
(1.846)

∗ −0.767
(−1.951)

∗ 2.911
(2.780)

∗∗∗ 0.134
(1.266)

0.009
(0.351)

0.462

skewPrem −0.044
(−1.847)

∗ 0.003
(0.158)

0.237
(2.248)

∗∗ −0.098
(−2.638)

∗∗∗ 0.228

skewPrem −0.035
(−1.733)

∗ −0.011
(−0.584)

0.191
(1.715)

∗ −0.071
(−1.971)

∗∗ 0.159
(2.080)

∗∗ −0.396
(−1.806)

∗ −0.037
(−1.577)

−0.002
(−0.376)

0.329

Notes: The table reports estimates of the MIDAS regression specification (29) in which the cross-sectional average of EUR physical volatility (vol), volatility

risk premia (volPrem), physical skewness (skew), or skewness risk premia (skewPrem) is regressed on a constant, dispersion and skewness of agents’ belief

distributions for future Eurozone real GDP growth and inflation (GDPvol, GDPskew, INFvol, and INFskew), volatility and skewness of the risk-neutral

Eurostoxx 50 index return distribution (EQvol and EQskew), the spread between the 3-month OIS rate and the 3-month German Bubill yield (ILLIQ), and

the MBA Refinancing Index (REFI). Physical volatility and volatility risk premia are measured in basis points, and the MBA Refinancing Index is divided

by 1000. Estimation is by non-linear least squares. T -statistics, corrected for heteroscedasticity and serial correlation up to 26 lags (i.e., two quarters), are

in parentheses. The sample period is June 6, 2001 to January 27, 2010. *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively.

Table 10: Fundamental drivers of EUR swap rate distributions



∆GDPvol ∆GDPskew ∆INFvol ∆INFskew ∆EQvol ∆EQskew ∆ILLIQ ∆REFI R2

∆vol 23.591
(2.343)

∗∗ −0.474
(−0.083)

8.335
(0.221)

8.059
(1.175)

0.176

∆vol 21.784
(2.139)

∗∗ 1.790
(0.244)

12.096
(0.322)

11.926
(1.513)

18.723
(0.556)

−94.012
(−0.944)

12.153
(2.013)

∗∗ 2.154
(1.103)

0.311

∆volPrem −1.742
(−1.692)

∗ −0.741
(−1.267)

−0.210
(−0.055)

−1.049
(−1.495)

0.187

∆volPrem −2.125
(−1.885)

∗ −0.803
(−0.989)

−1.842
(−0.443)

−0.635
(−0.728)

−0.203
(−0.055)

17.462
(1.585)

0.082
(0.122)

0.033
(0.153)

0.280

∆skew −0.077
(−0.269)

0.436
(2.672)

∗∗∗ 1.483
(1.380)

−0.117
(−0.595)

0.258

∆skew −0.041
(−0.151)

0.433
(2.196)

∗∗ 1.931
(1.910)

∗ −0.282
(−1.331)

0.585
(0.646)

−0.337
(−0.126)

−0.414
(−2.548)

∗∗ 0.045
(0.853)

0.502

∆skewPrem 0.018
(0.593)

−0.013
(−0.765)

−0.181
(−1.569)

0.038
(1.817)

∗ 0.141

∆skewPrem 0.039
(1.541)

−0.002
(−0.110)

−0.151
(−1.609)

0.037
(1.852)

∗ −0.146
(−1.724)

∗ −1.021
(−4.095)

∗∗∗ 0.023
(1.497)

0.003
(0.669)

0.472

Notes: The table reports estimates of the regression specification (32) in which the quarterly change in the cross-sectional average of USD physical volatility

(vol), volatility risk premia (volPrem), physical skewness (skew), or skewness risk premia (skewPrem) is regressed on a constant and the quarterly changes

in the dispersion and skewness of agents’ belief distributions for future U.S. real GDP growth and inflation (GDPvol, GDPskew, INFvol, and INFskew),

the volatility and skewness of the risk-neutral S&P 500 index return distribution (EQvol and EQskew), the spread between the 3-month OIS rate and

the 3-month Treasury bill yield (ILLIQ), and the MBA Refinancing Index (REFI). Physical volatility and volatility risk premia are measured in basis

points, and the MBA Refinancing Index is divided by 1000. Estimation is by ordinary least squares. T -statistics, corrected for heteroscedasticity and serial

correlation up to 2 lags (i.e., two quarters), are in parentheses. The sample period is January, 2002 to January, 2010. *, **, and *** denote significance at

the 10, 5, and 1 percent levels, respectively.

Table 11: Fundamental drivers of USD swap rate distributions, regression in differences



∆GDPvol ∆GDPskew ∆INFvol ∆INFskew ∆EQvol ∆EQskew ∆ILLIQ ∆REFI R2

∆vol −0.703
(−0.146)

5.926
(1.883)

∗ 66.321
(2.122)

∗∗ −1.567
(−0.249)

0.169

∆vol −1.506
(−0.305)

6.155
(1.744)

∗ 67.924
(2.055)

∗∗ −4.409
(−0.676)

34.517
(1.737)

∗ −43.332
(−0.807)

5.718
(1.597)

−1.282
(−1.108)

0.308

∆volPrem −0.317
(−1.676)

∗ −0.206
(−1.671)

∗ −2.516
(−2.055)

∗∗ 0.250
(1.013)

0.226

∆volPrem −0.350
(−1.714)

∗ −0.265
(−1.818)

∗ −2.940
(−2.155)

∗∗ 0.281
(1.043)

−0.577
(−0.703)

2.546
(1.148)

−0.016
(−0.105)

0.036
(0.762)

0.285

∆skew 0.193
(1.776)

∗ 0.055
(0.769)

0.984
(1.398)

0.294
(2.073)

∗∗ 0.257

∆skew 0.224
(1.975)

∗∗ 0.070
(0.863)

1.052
(1.386)

0.297
(1.981)

∗∗ −0.867
(−1.901)

∗ 1.056
(0.855)

0.083
(1.008)

0.025
(0.932)

0.357

∆skewPrem −0.051
(−1.882)

∗ 0.003
(0.164)

−0.202
(−1.158)

−0.061
(−1.732)

∗ 0.309

∆skewPrem −0.052
(−1.891)

∗ −0.003
(−0.161)

−0.205
(−1.124)

−0.063
(−1.763)

∗ 0.242
(2.204)

∗∗ 0.108
(0.363)

−0.027
(−1.346)

−0.006
(−0.924)

0.439

Notes: The table reports estimates of the regression specification (32) in which the quarterly change in the cross-sectional average of EUR physical volatility

(vol), volatility risk premia (volPrem), physical skewness (skew), or skewness risk premia (skewPrem) is regressed on a constant and the quarterly changes in

the dispersion and skewness of agents’ belief distributions for future Eurozone real GDP growth and inflation (GDPvol, GDPskew, INFvol, and INFskew),

the volatility and skewness of the risk-neutral Eurostoxx 50 index return distribution (EQvol and EQskew), the spread between the 3-month OIS rate and

the 3-month German Bubill yield (ILLIQ), and the MBA Refinancing Index (REFI). Physical volatility and volatility risk premia are measured in basis

points, and the MBA Refinancing Index is divided by 1000. Estimation is by ordinary least squares. T -statistics, corrected for heteroscedasticity and serial

correlation up to 2 lags (i.e., two quarters), are in parentheses. The sample period is July, 2001 to January, 2010. *, **, and *** denote significance at the

10, 5, and 1 percent levels, respectively.

Table 12: Fundamental drivers of EUR swap rate distributions, regression in differences
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Figure 1: Time-series of volatility and skewness of the conditional 1-year ahead distribution

of the USD 10-year swap rate

Notes: Panel A displays conditional volatility, measured in basis points, and Panel B displays conditional

skewness. The moments are computed under the annuity measure A. The time-series consist of 419 weekly

observations from December 19th, 2001 to January 27th, 2010.
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Figure 2: Time-series of the USD normal implied volatility smile of the 1-year option on 10-year swap rate

Notes: Panel A displays the data, Panel B displays the smiles obtained in the SV1 specification, and Panel C displays the smiles obtained in the SV2

specification. The smiles are the differences between implied volatilities for different strikes and ATM implied volatilities. Implied volatilities are measured

in basis points. The time-series consist of 419 weekly observations from December 19th, 2001 to January 27th, 2010.
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